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ABSTRACT
Computational fluid dynamics (CFD) has proven to be

an invaluable tool for the design and analysis of high-
speed propulsion devices. Massively parallel comput-
ing, together with the maturation of robust CFD codes,
has made it possible to perform simulations of com-
plete engine flowpaths. Steady-state Reynolds-Averaged
Navier-Stokes simulations are now routinely used in the
scramjet engine development cycle to determine optimal
fuel injector arrangements, investigate trends noted dur-
ing testing, and extract various measures of engine ef-
ficiency. Unfortunately, the turbulence and combustion
models used in these codes have not changed significantly
over the past decade. Hence, the CFD practitioner must
often rely heavily on existing measurements (at similar
flow conditions) to calibrate model coefficients on a case-
by-case basis. This paper provides an overview of the
modeled equations typically employed by commercial-
quality CFD codes for high-speed combustion applica-
tions. Careful attention is given to the approximations
employed for each of the unclosed terms in the averaged
equation set. The salient features (and shortcomings) of
common models used to close these terms are covered in
detail, and several academic efforts aimed at addressing
these shortcomings are discussed.

INTRODUCTION
Computational Fluid Dynamics (CFD) models typi-

cally employed for compressible reacting internal flows
have far less predictive capabilities than their counter-
parts used for low-speed external flow applications. CFD
models and experimental techniques applied to low-speed
external flows have reached a level of maturity such that
commercial aviation companies are now asking for drag
coefficient estimates that have an uncertainty level as low
as one count1 or 0.0001. This translates to an uncer-
tainty level of±0.5% of the total drag for a typical air-
craft at cruise conditions. While this level of accuracy
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has not yet been realized, a statistical analysis of drag
predictions presented at a recent Drag Reduction Work-
shop2 organized by the American Institute of Aeronau-
tics and Astronautics showed that drag was predicted by
CFD to within an uncertainty of±43 drag counts. This
value is comparable to (although larger than) the uncer-
tainty of±8 drag counts extracted from results based on
wind tunnel tests. This level of expectation from CFD
data is far removed from that felt by CFD practitioners
of high-speed reacting internal flows. Results presented
at a recent Joint Army/Navy/NASA/Air Force Work-
shop on Turbulence and Kinetics Models for Scramjet
Simulation included several examples where Reynolds-
Averaged Navier-Stokes (RANS) models failed to even
qualitatively mimic the fundamental flow physics present
in these devices.

Higher order modeling approaches, such as Large
Eddy Simulation (LES), offer significant advantages that
overcome many of the shortcomings associated with the
statistical representation of single-point RANS closures.
The LES approach for turbulence closure attempts to
resolve the large-scale components of turbulence while
modeling the smaller scales. Most of the transport of
mass, momentum, and energy (on the order of 90%) is
done by the large eddies, while the primary role of the
small eddies is to dissipate these fluctuations. Hence,
it is the large eddies that tend to interact directly with
the mean flow. The resolution of the large scales implies
that values chosen for modeled turbulent transport coeffi-
cients (e.g. turbulent Prandtl and Schmidt numbers) will
have less of an impact on the overall flowfield prediction.
The smaller turbulent scales tend to be isotropic in na-
ture and less dependent on boundary conditions and flow
type than the larger scales. Thus, the modeling developed
for small scales should be more generally applicable than
models developed for the entire range of turbulent scales.
Unfortunately, the computational costs of LES often pro-
hibit its use as an engineering design tool for practical
applications. This is particularly true for attached wall-
bounded regions at modest to high Reynolds numbers. In
fact, Spalart3 has estimated that the application of tradi-
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tional LES to an airliner wing would require on the order
of 1020 floating point operations. This value is roughly
one million times that of the largest RANS calculations
attempted today.

The immense costs involved with resolving even a
fraction of the turbulence spectra forces the contin-
ued reliance on single-point phenomenological models
for the foreseeable future. Therefore, enhancements
to Reynolds-Averaged Navier-Stokes methodologies will
continue to be in high demand. This paper summarizes
the current state-of-the-art modeling procedures used by
engineers to model high-speed reacting flows. The typi-
cal set of equations used for high-speed propulsion appli-
cations are described along with all of the approximations
(many of which are often taken for granted) required to
close the averaged equation set. Some recent academic
works meant to expand the applicability of the modeled
equation set are also highlighted.

GOVERNING EQUATIONS

The equations that describe chemically reacting single-
phase flows at conditions representative of most high-
speed combustion applications are the Navier-Stokes
equations coupled withns−1 species mass continuity
equations (nsis the number of species considered). These
partial differential equations can be written as follows:

∂ρ
∂ t

+
∂

∂x j
(ρu j) = 0 (1a)

∂
∂ t

(ρui)+
∂

∂x j
(ρuiu j + δi j P− τi j ) = 0 (1b)

∂
∂ t

(ρE)+
∂

∂x j
(ρHu j +q j − τi j ui) = 0 (1c)

∂
∂ t

(ρYm)+
∂

∂x j
(ρYmu j + ρYmVj) = ẇm (1d)

whereρ is the density,ui is the velocity,P is the pressure,
E is the total energy,H is the total enthalpy,τi j is the
stress tensor,q j is the heat flux vector, andYm, Vj , andẇm

are the mass fraction, diffusion velocity, and production
rate, respectively, of species “m”.

The time-averaged equations are obtained by decom-
posing each flow variable into a mean and fluctuating
part. The following combination of conventional

φ = φ̄ + φ
′
, φ̄ ≡ lim

∆t→∞

1
∆t

∫ to+∆t

to
φdt (2)

and mass-weighted

φ = φ̃ + φ
′′
, φ̃ ≡

1
ρ̄

lim
∆t→∞

1
∆t

∫ to+∆t

to
ρφdt (3)

decompositions,

ρ = ρ̄ + ρ ′
ui = ũi +u

′′
i P = P̄+P

′

τi j = τ̄i j + τ ′
i j E = Ẽ+E

′′
H = H̃ +H

′′

qi = q̄i +q
′
i Ym = Ỹm+Y

′′
m ẇm = ¯̇wm+ ẇ

′
m

(4)

is a common choice that minimizes the number of un-
known correlations that appear. Substituting the decom-
posed variables (Eq. 4) into Eqs. 1a - 1d and averaging
the result yields the desired time-averaged equation set:

∂ ρ̄
∂ t

+
∂

∂x j
(ρ̄ũ j) = 0 (5a)

∂
∂ t

(ρ̄ ũi)+
∂

∂x j
(ρ̄ũi ũ j + δi j P̄) =

∂
∂x j

(
τ̄i j − ρ̄ũ

′′
i u

′′
j

)
(5b)

∂
∂ t

(
ρ̄Ẽ
)
+

∂
∂x j

(
ρ̄H̃ũ j

)
=

∂
∂x j

(
τ̄i j ũi + τi j u

′′
i − q̄ j − ρ̄H̃ ′′u

′′
j

)
(5c)

∂
∂ t

(
ρ̄Ỹm

)
+

∂
∂x j

(
ρ̄Ỹmũ j

)
=

¯̇wm−
∂

∂x j

(
ρYmVj + ρ̄Ỹ′′

mu
′′
j

)
(5d)

All terms on the right-hand-side of Eqs. 5b - 5d require
modeling assumptions.

Two unclosed terms arise in the time-averaged mo-
mentum equation (Eq. 5b). The first term is the time-
averaged molecular stress tensor, and the second term
is the Reynolds stress tensor. The Reynolds stress ten-
sor is the predominant term, and nearly all of the mod-
eling effort devoted towards the closure of the momen-
tum equations has centered around this term. The classes
of models available for this term will be described later.
The remaining term (̄τi j ) has historically been modeled
by ignoring the effects of turbulent fluctuations on the
molecular viscosity,µ , and assuming that the conven-
tional (ūi) and mass-weighted ( ˜ui) average velocity are
approximately equal. For a Newtonian fluid, these as-
sumptions allow the average stress tensor to be approxi-
mated as follows:

τ̄i j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
−

2
3

δi j µ
∂uk

∂xk

≈ µ
(

∂ ũi

∂x j
+

∂ ũ j

∂xi

)
−

2
3

δi j µ
∂ ũk

∂xk
(6)

Direct Numerical Simulation (DNS) studies4, 5 have sup-
ported assumptions of this type, at least for perfect gases
under mildly compressible conditions.
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The time-averaged energy equation (Eq. 5c) introduces
three additional correlations that require modeling (τ̄i j

has already been considered). The first new term is a
molecular diffusion term that is well approximated for
incompressible flows by the following expression:

∂
∂x j

(
τi j u

′′
i

)
≈

∂
∂x j

(
µ

∂ k̃
∂x j

)
(7)

wherek̃ is the turbulent kinetic energy,

k̃ =
1
2

ũ
′′
i u

′′
i (8)

For compressible flows, one typically assumes that this
relationship remains valid. The time-averaged heat flux
vector usually contains contributions from heat conduc-
tion and an energy flux due to inter-species diffusion,i.e.

q̄ j = −λ
∂T
∂x j

+
ns

∑
m=1

ρYmVjhm(T) (9)

The contribution from heat conduction is modeled in a
manner that is consistent with that done for the molecu-
lar stress tensor. That is, turbulent fluctuation effects are
omitted when evaluating the thermal conductivity,λ , and

the mass-weighted temperature fluctuation average,T̃ ′′ ,
is assumed to be negligibly small,i.e.

λ
∂T
∂x j

≈ λ
∂ T̃
∂x j

(10)

The treatment of the time-averaged inter-species diffu-
sion term varies depending on the model chosen for the
species diffusion velocity. The final term in Eq. 5c to be

modeled isρ̄H̃ ′′u
′′
j . The average (mass-weighted) total

enthalpy can be written in terms of the static enthalpy,h,
and kinetic energy terms,

H̃ = h̃+
1
2

(
ũi ũi +2k̃

)
(11)

Subtracting this expression from the expanded instanta-
neous total enthalpy yields the fluctuating component of
the total enthalpy,i.e.

H
′′
= h

′′
+ ũiu

′′
i +k

′′
(12)

The unclosed correlation,̄ρH̃ ′′u
′′
j , can then be expanded

to yield

ρ̄H̃ ′′u
′′
j = ρ̄h̃′′u

′′
j + ρ̄ũiũ

′′
i u

′′
j + ρ̄ k̃′′u

′′
j (13)

The first term is the Reynolds heat flux vector. This term
is modeled with various levels of complexity as will be
shown later. The second term is the dot product of the

mean velocity with the Reynolds stress tensor. This term
is closed based on the model chosen for the Reynolds
stress tensor. The third term represents turbulent trans-
port of the turbulent kinetic energy. The gradient diffu-
sion approximation is typically used to model this term,

ρ̄ k̃′′u
′′
j = −

µt

σk

∂ k̃
∂x j

(14)

whereµt is the eddy viscosity andσk is a closure coeffi-
cient defined by the chosen model for turbulence.

The remaining terms that require closure reside in the
species continuity equations (Eq. 5d). The first term is the
species production rate. A multitude of models exist for
closing this term that range from simple eddy break-up
/ eddy dissipation models6, 7 to more elaborate methods
based on probability theory.8−10 A description of mod-
els that are typically used for high-speed reacting flows
will be discussed later. The remaining unclosed terms are
diffusion terms. The diffusion velocity of species “m” is
usually evaluated from Fick’s law of diffusion,i.e.

Vj = −
D
Ym

∂Ym

∂x j
(15)

when the Reynolds-averaged equation set is considered.
In this expression,D is the mass diffusivity of species
“m” relative to the mixture. The use of this expression,
in lieu of the costly evaluation of the multicomponent
diffusion equation, is often justified by the premise that
the “effective” turbulent diffusion is expected to domi-
nate the molecular diffusion processes throughout most
of the flowfield. Through Fick’s law, the terms involving
the species diffusion velocities are expressed as follows:

ρYmVj = −ρD
∂Ym

∂x j

ns

∑
m=1

ρYmVjhm(T) = −
ns

∑
m=1

ρDhm(T)
∂Ym

∂x j
(16)

If one employs the same approximations used to model
the average molecular stress tensor (i.e. turbulent fluctua-
tion effects neglected on the mixture diffusivity, and con-
ventional averages assumed equivalent to mass-weighted
averages), then these expression simplify to the follow-
ing:

ρD
∂Ym

∂x j
≈ ρ̄D

∂Ỹm

∂x j

ns

∑
m=1

ρDhm(T)
∂Ym

∂x j
≈

ns

∑
m=1

ρ̄Dhm(T̃)
∂Ỹm

∂x j
(17)

Note that the effect of temperature fluctuations on the
species enthalpy had to be ignored to arrive at the above
expression for the averaged inter-species diffusion terms.
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This rather dubious approximation (along with the ne-
glection of composition fluctuations) is also made when
extracting the mean temperature from the conserved vari-
ables (or vice-versa). The final term to be modeled is the

Reynolds mass flux vector,̄ρỸ′′
mu

′′
j . This term is usually

modeled with the gradient diffusion approximation, al-
though more complex models have also been used as will
be shown later.

The model chosen for the equation of state intro-
duces additional closure uncertainties. Even the simplest
choice, where the fluid is assumed to behave as a mixture
of perfect gases,

P = ρRT (18)

requires modeling assumptions since the gas “constant”
(R) varies with composition,

R= Ru

ns

∑
m=1

Ym

Wm
(19)

In this expression,Ru is the universal gas constant and
Wm is the molecular weight of species “m”. All efforts,
known to the author, circumvent this closure difficulty by
simply neglecting the effects of composition fluctuations
on the equation of state,i.e.

P̄ = ρRT≈ ρ̃R(Ỹm)T̃ (20)

MODELING PRACTICES

The previous section highlighted the numerous closure
approximations that are required when modeling com-
pressible reacting flows. This section discusses common
closure approximations to the terms that are generally
perceived to require the most attention by model develop-

ers. These terms are the Reynolds stress tensor (ρ̄ũ
′′
i u

′′
j ),

Reynolds heat flux vector (̄ρh̃′′u
′′
j ), Reynolds mass flux

vector (ρ̄Ỹ′′
mu

′′
j ), and the time-averaged chemical source

term (¯̇wm). A description of models that are typically em-
ployed in high-speed combustion applications and their
known deficiencies are described in the sections that fol-
low.

Reynolds Stress Tensor
The most common closures used for the Reynolds

stress tensor are linear models based on the Boussinesq
approximation,i.e.

ρ̄ũ
′′
i u

′′
j =

2
3

δi j

(
ρ̄ k̃+ µt

∂ ũk

∂xk

)
− µt

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)
(21)

These models assume that the Reynolds stress compo-
nents are related to the mean strain rate tensor through an

isotropic eddy viscosity (µt). Models for the eddy vis-
cosity vary in complexity from simple algebraic (zero-
equation) models11 which require specification of a tur-
bulent velocity and length scale, to two-equation mod-
els 12−15 which solve partial differential equations for
both the turbulent velocity scale and an additional tur-
bulence scale (e.g. a length scale, time scale, or dissi-
pation rate). A three-equation (k-ε-v2) model has also
been proposed in the literature,16 although this model
has not been extensively applied to high-speed reacting
flows. Algebraic models have the advantage of being nu-
merically robust and easy to implement (at least for rel-
atively simple geometries). However, these models of-
ten require changes in their coefficients when applied to
different types of flowfields, and ambiguities often arise
when defining the turbulence scales for complex geome-
tries. Two-equation models, on the other hand, tend to
have a larger range of applicability, and they are easily
extended to complex geometries where it may be diffi-
cult to define relevant turbulent scales algebraically. One-
equation models, that involve a transport equation for a
quantity that can be directly related to the eddy viscos-
ity, 17, 18 have gained popularity in recent years, particu-
larly for external flow applications. This trend has not yet
been seen, to a large degree, for internal reacting flows.

The linear eddy viscosity models described previously
have several deficiencies that are rectified by invoking
higher order models. The first deficiency is a result of
the direct proportionality assumed between the Reynolds
stress and mean strain rate tensors (i.e. the Boussinesq
approximation). This feature prevents the prediction of
secondary flow motions that result from Reynolds stress
anisotropies. Moreover, these models do not incorpo-
rate the influences of pressure-strain correlations, which
are responsible for the distribution of anisotropy among
the normal stress components. The linear eddy viscosity
models are also unable to rigorously account for stream-
line curvature effects, since the Reynolds stresses depend
solely on the frame-invariant strain rate tensor. These de-
ficiencies are resolved through the use of second order
models that involve transport equations for each of the
Reynolds stress components,i.e.

∂
∂ t

(
ρ̄ũ

′′
i u

′′
j

)
+

∂
∂xk

(
ρ̄ũ

′′
i u

′′
j ũk

)

︸ ︷︷ ︸
(I)

= −
∂

∂xk

(
ρ̄ ˜u

′′
i u

′′
j u

′′
k

)

︸ ︷︷ ︸
(II)

− ρ̄ũ
′′
i u

′′
k

∂ ũ j

∂xk
− ρ̄ũ

′′
j u

′′
k

∂ ũi

∂xk︸ ︷︷ ︸
(III)

− u
′′
i

∂P
∂x j

−u
′′
j
∂P
∂xi︸ ︷︷ ︸

(IV)

+ u
′′
i

∂τ jk

∂xk
+u

′′
j
∂τik

∂xk︸ ︷︷ ︸
(V)

(22)
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This expression shows that the Reynolds stress ten-
sor is influenced by: (I) advection, (II) turbulent convec-
tion, (III) source/sink due to the mean velocity gradient,
(IV) source/sink due to the pressure gradient, and (V) dis-
sipation due to viscosity. The unclosed terms are terms
(II), (IV), and (V). The chain rule has historically been
applied to term (IV), resulting in an additional diffusion
term and a pressure-strain rate correlation,

u
′′
i

∂P
∂x j

+u
′′
j
∂P
∂xi

=
∂

∂xk

[
Pu

′′
i δ jk +Pu

′′
j δik

]

−


P

∂u
′′
i

∂x j
+P

∂u
′′
j

∂xi


 (23)

Similar expansions are applied to term (V) to yield a dif-
fusion term and a dissipation term,i.e.

u
′′
i

∂τ jk

∂xk
+u

′′
j
∂τik

∂xk
=

∂
∂xk

[
u
′′
i τ jk +u

′′
j τik

]

−


τ jk

∂u
′′
i

∂xk
+ τik

∂u
′′
j

∂xk


 (24)

The pressure-strain rate correlation is responsible for the
distribution of anisotropy among the normal stress com-
ponents. This term is often of the same order of magni-
tude as the source term due to the mean velocity gradient,
term (III). Hence, substantial efforts have been devoted
towards the modeling of this term. This term is usually
partitioned into a “slow” relaxation towards isotropy term
and a “rapid” response term resulting from imposed mean
velocity gradients.19−21 The dissipation term in Eq. 24 is
typically partitioned into isotropic and deviatoric compo-
nents, with the deviatoric component neglected in most
works,i.e.

τ jk
∂u

′′
i

∂xk
+ τik

∂u
′′
j

∂xk
≈

2
3

ρεδi j (25)

where

ε =
µ
ρ

∂u
′
i

∂xk

∂u
′
i

∂xk
(26)

Models for the third order velocity correlation, term (II),
can be found in Refs. 22 - 24. This term accounts for the
turbulent convection of the Reynolds stress and is mod-
eled to mimic a diffusion process.

The computational cost associated with solving the
Reynolds stress transport equations has discouraged its
use for complex engineering calculations. The increased
cost is due to the additional transport equations, and the
stiffness posed by the highly non-linear relationships in-
troduced to close these equations. This has led many to
consider algebraic closures derived from the Reynolds

stress equation. Implicit algebraic models25 are ob-
tained by enforcing equilibrium assumptions on the tur-
bulence. The specific assumptions are that the turbulence
has reached an equilibrium state,i.e.

D
Dt

(
ρ̄ ũ

′′
i u

′′
j

)
=


 ρ̄ ũ

′′
i u

′′
j

k̃


 Dk̃

Dt
(27)

and any anisotropies resulting from the turbulent trans-
port and diffusion terms are proportional to anisotropies
in the Reynolds stresses,

∂
∂xk

(
ρ̄ ˜u

′′
i u

′′
j u

′′
k +Pu

′′
i δ jk +Pu

′′
j δik −u

′′
i τ jk −u

′′
j τik

)
=


 ρ̄ ũ

′′
i u

′′
j

k̃


 ∂

∂xk

(
ρ̄ k̃u

′′
k +Pu

′′
k− τiku

′′
i

)
(28)

Unfortunately, the iterative process required to solve the
resulting system of equations has proven to be extremely
“stiff”. Pope 26 was able to cast these expressions into a
set of equations that result in explicit relationships for the
Reynolds stresses for two-dimensional flows. This ap-
proach was subsequently extended to three-dimensional
flows.27, 28 Algebraic Reynolds stress models, in contrast
to linear eddy viscosity models, retain the information
from the pressure-strain correlation models of the full
Reynolds stress closure, and allow for Reynolds stress
anisotropies. Of course, the applicability of the formu-
lation hinges on the validity of the equilibrium assump-
tions given by Eqs. 27 and 28. The computational ex-
pense associated with explicit algebraic Reynolds stress
models (EASM) is only slightly greater than that required
for standard two-equation variants of linear eddy viscos-
ity closures.

The importance of accounting for Reynolds stress
anisotropies can be illustrated by considering flow
through a rectangular duct. These flowfields are known
to contain stress-induced secondary motions near the cor-
ners of the duct, which develop due to Reynolds stress
anisotropies. Computed pitot pressure distributions ex-
tracted from simulations of a Mach 3.9 flow in a square
duct are compared with measurements29 in Figs. 1 and 2.
In these figures, the measured data is shown on the left
of the symmetry plane, while the computed results are
shown on the right. Fig. 1 compares computed results
using the linear Wilcoxk-ω model13 to measurements,
while Fig. 2 compares computed results using an ex-
plicit algebraic Reynolds stress model30 to measure-
ments. When the Reynolds stress anisotropies are not
accounted for (Fig. 1), secondary flow structures do not
develop in the corner region of the duct. As a result,
the boundary layer builds up more rapidly near the cor-
ners. The algebraic Reynolds stress model accounts for
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the stress anisotropies, allowing the secondary flow struc-
tures to develop. These structures transport high mo-
mentum fluid from the core flow into the corner regions
which results in a “squared-off” boundary layer profile
that more closely matches the experimental data. The
importance of accounting for the secondary flow struc-
tures is further illustrated in the wall pressure trace along
the duct (see Fig. 3). The boundary layer growth is over-
predicted in the lineark-ω results, yielding a larger total
pressure loss in the latter half of the duct. Rectangular
flowpaths are prevalent in many scramjet propulsion sys-
tems, hence accounting for the stress anisotropies may
prove to be a critical ingredient when assessing inlet and
isolator performance.

As a final note, a few statements should be made for
the class of models known simply as non-linear eddy vis-
cosity models (NLEVM).31−33 These models are func-
tionally similar to EASM models, in the sense that the
Reynolds stress tensor is represented by a polynomial ex-
pansion of some given tensorial basis.34 The primary dif-
ference between EASM and NLEVM models is the man-
ner in which the expansion coefficients are determined.
The expansion coefficients derived for EASM models are
based on the mathematical procedure followed to recast
the implicit Reynolds stress expressions into explicit re-
lationships. The expansion coefficients determined for
NLEVM models, on the other hand, are based on empiri-
cism and realizability constraints.

Reynolds Heat/Mass Flux Vector
The turbulent transport of a scalar property has histor-

ically been modeled using the gradient diffusion hypoth-
esis. This model choice assumes that the turbulent trans-
port of the scalar is in the direction of decreasing value
for that scalar. This leads to the following model expres-
sions for the Reynolds heat flux

ρ̄ h̃′′u
′′
j = −

µt

Prt

∂ h̃
∂x j

(29)

and mass flux

ρ̄Ỹ′′
mu

′′
j = −

µt

Sct

∂Ỹm

∂x j
(30)

vectors. The diffusion rates are controlled by specifying
the turbulent Prandtl (Prt) and Schmidt (Sct) numbers.
The turbulent Prandtl number specifies the ratio of the
rate of turbulent momentum transport to rate of turbu-
lent energy transport, while the turbulent Schmidt num-
ber defines the ratio of the turbulent momentum transport
rate to turbulent mass transport rate. Constant values for
these coefficients are usually assumed in applications for
low- and high-speed reacting flows of engineering inter-
est, even though values for these coefficients have been
shown to vary spatially.35−45 Table 1 summarizes the

range of values that have been observed (both experimen-
tally and computationally) for various flows.

Calculations performed by this author46, 47 and other
works 43, 48 have at times shown an extreme sensitivity
to values assumed for these parameters. An example is
taken from Ref. 47 involving calculations performed for
a direct connect scramjet combustor (see Fig. 4) tested
at Wright-Patterson Air Force Base (AFRL/PRA). Fig-
ures 5 and 6 show mass-flux weighted flow properties
through the combustor at flight conditions that corre-
spond to Mach 4.0 and Mach 6.5 operation. Results are
shown for variousPrt values withSct fixed at 0.5, and
for severalSct values withPrt fixed at 0.89. The range
of values considered is within the range of values given
in Table 1. As one would expect, reducing the turbulent
Schmidt number consistently intensified combustion due
to enhanced species diffusion processes. At the Mach 4.0
condition, the reduction ofSct from 0.5 to 0.25 enhanced
turbulent mass transfer (and subsequent heat release) to
levels that the isolator was not able to withstand, resulting
in a potentially catastrophic un-start condition. A mod-
est increase ofSct from 0.5 to 0.75 reduced the turbu-
lent mass transfer to levels that were not able to sustain
combustion. Hence, a variation inSct from 0.25 to 0.75
yielded results that covered the entire spectrum of oper-
ability for the engine at the Mach 4.0 flight condition.
A reduction of the turbulent Prandtl number enhanced
the combustion process only at the higher Mach number
state. At the Mach 4.0 condition, the heightened thermal
diffusion processes allowed heat to be transferred away
from the flameholding (recirculation) zones at a rate that
was not sustainable, causing flame blow-out. These re-
sults clearly suggest that extreme care should be taken
when attempting to characterize these high-speed propul-
sion devices (that contain a variety of different mix-
ing mechanisms) with constant turbulent transport coeffi-
cients.

Table 1: Turbulent Prandtl & Schmidt Number Values
Flow Field Prt Sct

Planar Jets35−38 0.2 - 3.0 0.1 - 2.2
Round Jets39−41 0.7 - 2.0 0.1 - 2.0

Backward Facing Step42 0.7 - 3.0 NA
Jet into Cross Flow43, 44 NA 0.1 - 0.5

Injection Behind a Bluff Body45 NA 0.2 - 0.7

The physical mechanisms that directly influence the
Reynolds heat and mass flux vectors can be ascertained
by examining the transport equations for these quanti-
ties. The transport equations that govern the Reynolds

6
American Institute of Aeronautics and Astronautics



heat and mass flux vectors can be written as:

∂
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The above expressions show that the evolution of each
Reynolds flux vector is governed by: (I) advection,
(II) turbulent convection, (III) source/sink due to the
mean velocity gradient, (IV) source/sink due to the mean
scalar gradient, (V) source/sink due to the pressure gra-
dient, (VI) dissipation due to viscosity, and (VII) dissi-
pation due to scalar diffusivity. Note that the Reynolds
mass flux vector is also directly affected by the chem-
istry (VIII). Clearly, any attempt to collapse all of these
physical phenomena into a single gradient diffusion ef-
fect is questionable. In fact, the literature is filled with ev-
idence of counter-gradient diffusion effects49−51 (i.e. tur-
bulent diffusion of a scalar against its mean gradient) on
the Reynolds flux vectors, particularly in pre-mixed ap-
plications. Counter-gradient diffusion has been attributed
to the mean pressure gradient portion of term (V) in
Eqs. 31 and 32.

The number of scalar transport expressions that result
from Eqs. 31 and 32 is 3×ns. Additional supporting tur-
bulent transport equations for variances/covariances and
their dissipation rates are also typically required to model
the unclosed terms on the right-hand-side of these equa-
tions. Hence, even if suitable models were developed to
close each of the scalar flux vector equations, the number
of additional equations introduced would greatly exceed
the equation count given by the first order moments of

Eqs. 5a - 5b. This fact suggests that it would be impracti-
cal to include a full second order closure model in any
simulation of engineering interest. To circumvent this
difficulty, some limiting studies have invoked equilibrium
assumptions to reduce the differential equations to alge-
braic relationships. Other studies have coupled the gra-
dient diffusion hypothesis with models that allow the tur-
bulent Prandtl and/or Schmidt number to vary spatially.

The work of Adumitroaie52 involved the development
and application of a complete algebraic closure for the
Reynolds stress tensor and scalar flux vectors. The ex-
plicit algebraic Reynolds stress model used in this effort
was based on the closure of Taulbee27 and included com-
pressibility effects. The algebraic Reynolds scalar flux
models for temperature and species composition were de-
rived in Ref. 52 based on similar principles. The model
neglected scalar correlations higher than second order
and cross-correlations between temperature and compo-
sition were neglected (as were temperature fluctuation ef-
fects on the reaction rates). Additional transport equa-
tions (beyond those given by Eqs. 5a - 5b) required by the
model include the turbulent kinetic energy and its dissi-
pation rate, the variance of temperature and its dissipation
rate, and the variances and covariances of thens−1 com-
position variables and their dissipation rates. The end re-
sult is thatns×(ns−1)+4 additional transport equations
are introduced; a value that exceeds the equation count
for the first order moments forns>2. Nevertheless, en-
couraging results were obtained for a compressible mix-
ing layer (cold flow) and planar jet when compared with
results obtained from a fully second order moment trans-
port model. The author noted that high shear regions were
problematic with the model, suggesting that the highly
nonlinear nature of the algebraic closures could pose dif-
ficulties in complex flows. Further numerical difficulties
associated with the use of the algebraic Reynolds mass
flux expressions were noted by the author when chemical
reactions were considered.

The development of models that allow for variable tur-
bulent Prandtl/Schmidt numbers within the context of the
gradient diffusion hypothesis has been pursued by several
authors.40, 41, 44 The variable turbulent Prandtl number
models tend to involve additional transport equations for

the temperature or enthalpy/energy variance (̃g′′g′′) and
its dissipation rate (̃εg). This allows an additional (in-
dependent) turbulent time scale to be introduced into the
definition of the thermal eddy diffusivity:

αt ≡
µt

Prt
= CT k̃τT (33)

whereCT is a model coefficient (possibly with a near-
wall damping function) andτT is some measure of the
turbulent thermal time scale. The thermal time scale can
be based purely on the scalar transport variables, or a
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mixed time scale can be defined by introducing the tur-
bulent time scale based on the velocity field (τ), i.e.

τT =

(
g̃′′g′′

ε̃g

)
or τT =

√
τ

(
g̃′′g′′

ε̃g

) 1
2

(34)

These particular choices for the thermal time scale yield
the following expressions for the turbulent Prandtl num-
ber:

Prt =
µt

CT k̃

(
ε̃g

g̃′′g′′

)
or Prt =

µt

CT k̃
√

τ

(
ε̃g

g̃′′g′′

) 1
2

(35)
Variable turbulent Schmidt number models are arrived at
in a similar fashion by integrating evolution equations for
some measure of the composition variance (e.g. the mix-
ture fraction variance or the sum of all species mass frac-
tion variances) and its dissipation rate. If these quantities

are also denoted bỹg′′g′′ andε̃g, then the expressions re-
lated to the eddy diffusivity of mass are obtained from
Eqs. 33 , 34 , and 35 by replacingPrt , CT , andτT with
Sct , CM, andτM.

Chemical Production Rate
The most common species production rate closures

used for high-speed reacting flows are based on laminar-
chemistry, eddy break-up / dissipation,6, 7 or proba-
bility density function (PDF)8−10 formulations. Ap-
proaches based on a laminar-chemistry assumption sim-
ply ignore turbulence-chemistry interactions by evaluat-
ing the chemical source terms based on mean flow prop-
erties. Eddy break-up models are mixing limited models
where the chemical time scale is assumed to be limited
by the dissipation rate of turbulent eddies. Formulations
based on ideas borrowed from probability theory repre-
sent perhaps the most elegant class of models for averag-
ing the chemical source terms. However, these formula-
tions can be considerably more expensive to invoke.

Let a general kinetic step be denoted as follows:

ns+1

∑
m=1

ν
′
mlCm ⇀↽

ns+1

∑
m=1

ν
′′
mlCm l = 1,nr (36)

whereν ′
ml andν ′′

ml are the reactant and product stoichio-
metric coefficients for species “m” in reaction “l ”, Cm is
the symbol for constituent “m” (the ns+1 constituent rep-
resenting the third body species), andnr is the number of
chemical reactions considered. The expressions used for
the chemical source terms are then generally given by the
law of mass action or empirically derived global reaction
rate expressions. The law of mass action applies to re-
action models that are based on elementary kinetic steps,
and can be written as follows:

ẇm = Wm

nr

∑
l=1

(
ν

′′
ml −ν

′
ml

)


kfl

ns+1

∏
n=1

(
ρn

Wn

)ν
′
nl

− kbl

ns+1

∏
n=1

(
ρn

Wn

)ν
′′
nl


 (37)

where kfl and kbl are the forward and backward reac-
tion rate coefficients of reaction “l ” (typically exponen-
tial functions of temperature), andρn is the density of
species “n”. The molar concentration of the third body
constituent in Eq. 37 is defined by the following expres-
sion:

ρns+1

Wns+1
=

ns

∑
m=1

tbeml
ρm

Wm
(38)

wheretbeml is the third body efficiency of species “m” in
reaction “l” provided with the kinetic model. The chem-
ical source term based on one-way global steps (some-
times referred to as arbitrary reaction order steps) can be
written in the following manner:

ẇm = Wm

nr

∑
l=1

(
ν

′′
ml −ν

′
ml

)
kfl

ns

∏
n=1

(
ρn

Wn

)anl

(39)

Here, the coefficientanl, in general, is not equal to the
stoichiometric coefficient of species “n” in reaction “l” as
is the case with the law of mass action. This coefficient is
instead determined empirically using data generated from
measurements or from a detailed kinetic mechanism.

The species production rates are point functions (i.e.
functions that are defined by variables at a single spatial
and temporal location), thus they are ideally suited for
single point PDF closures. The source terms, given by
Eqs. 37 and 39, are a function of temperature and com-
position only. As a result, these terms can be averaged
by integrating the product of the species production rates
with the joint PDF (P) of temperature and composition
at each spatial location,i.e.

¯̇wm =

∫
ẇm(T̂, ρ̂1, . . . , ρ̂ns)P(T̂, ρ̂1, . . . , ρ̂ns)

dT̂dρ̂1 . . .dρ̂ns (40)

The integration in the above expression is taken over all
realizable values for temperature and composition, and
the independent variables of the PDF (T̂ and ρ̂m) repre-
sent the sample space of the random variablesT andρm.
The form for the joint PDF can be assumeda priori 53−57

or by integrating the evolution equation governing the
PDF.8−10 Note that assumed PDF formulations based on
mixture fraction,53 which are popular in low-speed ap-
plications, are seldom used in high-speed flows. These
approaches tend to treat the reacting system as either a
mixed-is-burned flame sheet or assume the mixture is in
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chemical equilibrium. Neither infinitely fast chemistry
assumption is appropriate in supersonic flows due to lim-
ited flow residence times.

The computational overhead associated with invoking
a PDF approach varies greatly depending on the partic-
ular formulation invoked. Assumed PDF methods typi-
cally add 10–30% overhead over a laminar-chemistry cal-
culation, provided that the integrations in Eq. 40 can be
performed analytically or through an efficient table look-
up procedure. Approaches that involve the integration of
an evolution equation governing the joint PDF are con-
siderably more expensive, possibly by as much as a factor
of 10 or more over their laminar-chemistry counter-parts.
Due to the large dimensionality of the joint PDF, solving
the evolution equation with a finite difference scheme is
not practical.10 Instead, the equation is typically simu-
lated using a Monte Carlo scheme. The additional com-
putational cost is then dependent on the number of rep-
resentative sample space ensembles used for the Monte
Carlo simulation.

Calculations of high-speed reacting flows that have ac-
counted for turbulence-chemistry interactions through the
use of PDF formulations can be found in Refs. 46 , 58 -
61. One observation found from each of these sources
is that the effect of turbulence-chemistry interactions is
relatively minor except in the vicinity of flame ignition.
Figure 7 compares results obtained for a supersonic ax-
isymmetric H2/Air burner62 using laminar-chemistry, as-
sumed PDF, and evolution PDF closure approximations.
The assumed PDF model invoked a Gaussian distribution
for temperature fluctuations and a multi-variateβ distri-
bution 63 for composition fluctuations. Reaction cross-
correlations (RCC)61 between temperature and composi-
tion were neglected in the model. The evolved PDF re-
sults were obtained by integrating an equation governing
the scalar probability density function for enthalpy and
composition via a Eulerian Monte Carlo procedure.10

The similarity observed in the results extracted from
each turbulence-chemistry closure is an outcome that is
contrary to what is typically expected in low-speed appli-
cations. Large scale mixing within turbulent eddies tends
to “stir” the fuel and air streams rather than mix them
at a scale small enough for chemical reactions to take
place. Hence, the average mass fractions within a control
volume larger than the eddy would suggest that the two
streams are well mixed, but in reality the two stream may
still be segregated within the eddy. This phenomenon, re-
ferred to in the literature as unmixedness, leads to large
scalar covariance levels, and tends to substantially reduce
the magnitude of the species production rate as compared
with results based on a laminar-chemistry treatment. One
explanation as to why this phenomenon is not as preva-
lent in high-speed flows was described in Ref. 38. In
this work, LES was used to examine the scalar fluctua-

tion statistics of low-speed and high-speed mixing layers.
This effort showed that the mixture fraction variance ex-
tracted from the high-speed compressible mixing layer
was significantly lower than the values extracted from
the low-speed case. Moreover, a measure of the mixed
fluid probability and the peak mean temperature were
both higher for the high-speed mixing layer. These ob-
servations suggest that the concept of unmixedness may
be play a smaller role in high-speed reacting flows.

Models based on the eddy dissipation concept address
the turbulence closure problem by assuming that the ki-
netic rate is limited by the rate of mixing (on a molecu-
lar scale) between fuel and oxygen carrying eddies rather
than on the chemical time scale. In regions of high tur-
bulence levels, the eddy lifetime is short leading to large
eddy dissipation rates and more rapid molecular mixing
than regions of lower turbulence levels. This model is
applicable to irreversible reactions only, and is usually
applied to a single reaction step such as:

Fuel+ νA Air → νP Products (41)

where the stoichiometric coefficients (νA,νP) are related
to the stoichiometric Air to Fuel mass ratio (A/F), i.e.

νA =
WF

WA

(
A
F

)

st
, νP =

WF

WP

[(
A
F

)

st
+1

]
(42)

The chemical source term based on the eddy dissipation
concept proposed by Magnussen and Hjertager7 is given
by the following relationship:

¯̇wm = Wm

(
ν

′′
m−ν

′
m

) A
τ

MIN

[
ρ̄F

WF
,

ρ̄A

νAWA
,B

ρ̄P

νPWP

]

(43)
whereA andB are empirical constants originally set to
4.0 and 0.5, respectively in Ref. 7. This model is popu-
lar due to its simplicity and its dependence only on first
order correlations (i.e. no additional transport equations
are required). Many implementations of this model also
permit the chemical time scale to be considered as a lim-
iting rate using either Eq. 37 or 39. In this scenario, the
expression that yields the smallest magnitude for the re-
action rate is the expression used to compute the source
term. This additional limit discourages chemical reac-
tions in cold regions of the flowfield. One clear advan-
tage of the pure model given by Eq. 43 is that reaction
rate coefficients, which are often not available for com-
plex fuels, are not required. This model also requires a
minimal number of species transport equations, making
it computationally efficient. Moreover, the use of a single
time scale for reaction (τ) alleviates much of the stiff-
ness involved with more complex chemical systems. The
major drawback of this model is that the details of the
chemical processes are neglected. Consequently, models
of this type should never be used to predict lean blow-out
limits or combustor ignition characteristics.
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CONCLUSIONS
The use of steady-state RANS models has been and

will continue to be the tool of choice for modeling com-
pressible reacting flows for high-speed commercial and
military applications. Even with expected increases in
computer speed, the role of LES will likely be limited to
idealized component analysis, or to scenarios where flow
unsteadiness is of special concern. Hence, improvements
to modeling approaches for compressible reacting flows
within a RANS framework offers the greatest potential
advancement to CFD practitioners. Of the issues raised
in this document, improvements to the turbulent scalar
transport models are likely to reap the most benefits. The
simple gradient diffusion models with constant transport
coefficients have proven to be particularly troublesome.
When one considers the limited residence times associ-
ated with scramjet engine flows (typically on the order of
one millisecond), it is not surprising how even a small dis-
crepancy in mixing rate prediction can lead to large devi-
ations in combustor performance. Considerably more at-
tention has historically been given to higher order models
for closure of the Reynolds stress tensor (at least in low-
speed applications). The use of models from this class
is envisioned to improve upon predictions of hypersonic
inlet and isolator flows which are dominated by shock-
induced separation and Reynolds stress anisotropies. Lin-
ear Reynolds stress models are certainly not capable of
predicting the latter of these flow scenarios. Calculations
to date have yet to show a first order need for the ad-
vancement of turbulence-chemistry interaction models in
high-speed applications; although this issue has not yet
been thoroughly addressed. This observation is in stark
contrast to low-speed reacting flows where these models
are required to avoid a significant over-prediction of the
mean temperature field. At this time, imprecise results
associated with the modeling of turbulence-chemistry in-
teractions tend to be overshadowed by inaccuracies in tur-
bulent scalar transport predictions.
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Figure 1: Measured (left) and computed (k-ω with Boussinesq) pitot pressure profiles at x/h=40
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Figure 2: Measured (left) and computed (explicit algebraicReynolds stress) pitot pressure profiles at x/h=40

x/h

P
/P

o2
,c

l
×

1
03

0 10 20 30 40 50
0

5

10

15

20

25

30

35
Experiment
k-ω (Boussinesq)
k-ω (EASM)

Figure 3: Measured and computed wall pressure distributions along the center of the duct
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Figure 4: Schematic of facility flowpath

x/h

P
[k

P
a]

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24
0

25

50

75

100

125

150

175

200

225

250

275

300 Prt=0.89, Sct=0.5
Prt=1.8, Sct=0.5
Prt=0.45, Sct=0.5
Prt=0.89, Sct=0.75
Prt=0.89, Sct=0.25

x/h

T
[K

]

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

1400

1600

1800

2000 Prt=0.89, Sct=0.5
Prt=1.8, Sct=0.5
Prt=0.45, Sct=0.5
Prt=0.89, Sct=0.75
Prt=0.89, Sct=0.25

Figure 5: Mass-flux weighted pressure and temperature at theMach 4.0 flight condition
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Figure 6: Mass-flux weighted pressure and temperature at theMach 6.5 flight condition
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Figure 7: MeanH2O mole fraction comparisons with measurements (Chenget al.) obtained from laminar chemistry,
assumed PDF, and evolved PDF models
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