**Multiple Unix and Linux platform support for either**
** 1) Block level parallelization using MPI or MPICH for multi-processor machines**
** 2) Serial execution for single CPU machines**
**2-D, axi-symmetric, or 3-D structured multi-block grid topologies**
** - Automated 3-point, 5-point, and 6-point topology singularity detection ** |

**Block-to-block
interface options:**
** 1) Arbitrary block-to-block C(0) continuous connectivity**
** 2) Arbitrary block-to-block non-C(0) continuous connectivity** |

**Steady-state algorithms for spatially elliptic/hyperbolic and parabolic/hyperbolic equations**
** 1) Runge-Kutta with implicit residual smoothing**
** 2) Diagonalized approximate factorization**
** 3) Incomplete LU** |

** Unsteady algorithms**
** 1) Runge-Kutta**
** 2) Diagonalized approximate with dual time-stepping**
** 3) Incomplete LU with dual time-stepping** |

**Convergence acceleration options:**
** 1) Multi-grid**
** 2) Mesh sequencing**
** 3) Low Mach no. preconditioning** |

**Gas models**
** 1) Single component calorically and thermally perfect gases**
** 2) Arbitrary multi-component mixtures of thermally perfect gases**
** 3) Arbitrary multi-component mixtures of gases in thermal non-equilibrium** |

**Chemistry models**
** 1) Frozen flow**
** 2) Arbitrary, non-equilibrium, finite-rate chemical kinetics** |

**Inviscid flux reconstruction algorithms**
** 1) MUSCL kappa scheme of van Leer**
** 2) PPM scheme of Colella and Woodward**
** 3) WENO scheme of Carpenter and Fisher**
** 4) 2nd, 4th, and 6th order symmetric (central) schemes** |

**Inviscid flux schemes**
** 1) Roe flux difference split scheme with entropy fixes**
** 2) Edwards low dissipation flux split scheme**
** 3) Toro HLLC scheme**
** 4) Carpenter & Fisher α - split flux scheme** |

**Robust low-dissipation inviscid flux schemes**
** - Hybridization of dissipative and non-dissipative schemes via a discontinuity sensor**
**
a) Blend of dissipative (MUSCL, PPM, or WENO) with symmetric reconstruction**
**
b) Blend of dissipative (MUSCL, PPM, or WENO) with the α - split flux scheme** |

**Viscous flux treatments for laminar or turbulent flow**
** 1) Full Navier-Stokes**
** 2) Thin-layer Navier-Stokes**
** 3) Parabolized Navier-Stokes** |

**Turbulence model options for Reynolds-Averaged Simulations**
** 1) Spalart-Allmaras (conservative form)**
** 2) Menter k-omega (BSL)**
** 3) Menter k-omega (SST)**
** 4) Wilcox k-omega (1998) (low and high Reynolds number forms)**
** 5) Wilcox k-omega (2006) (low and high Reynolds number forms)**
** 6) Gatski-Speziale EASM k-omega** |

**Turbulence model options for Large Eddy Simulations**
** 1) Smagorinsky with van Driest wall damping**
** 2) Vreman**
** 3) Dynamic Smagorinsky**
** 4) Dynamic Vreman** |

**Surface turbulence boundary condition treatment options**
** 1) Wilcox compressible wall matching (k-omega based models)**
** 2) Solve to wall (all models)** |

**Hybrid Reynolds-Averaged / Large Eddy Simulation options**
** 1) Detached Eddy Simulation (two-equation based model of Strelets)**
** 2) Hybrid RAS/LES model of Edwards and Baurle** |

**Turbulence/Chemistry interaction closure models**
** 1) Eddy break-up model of Magnussen and Hjertager**
** 2) Temperature fluctuations: average reaction rate coefficient**
**
a) Assumed gaussian probability density function (PDF)**
**
b) Assumed beta probability density function (PDF)**
** 3) Species fluctuations: average product of concentration**
**
- Assumed multi-variate beta probability density function (PDF)** |