**Multiple
Unix and Linux platform support for either**
** 1)
Block level parallelization using MPI or MPICH for multi-processor machines**
** 2)
Serial execution for single CPU machines**
**2-D,
axi-symmetric, or 3-D single or multi-block grid topologies** |

**Block-to-block
interface options:**
** 1) arbitrary, block face-to-block
face C(0) continuous connectivity**
** 2) arbitrary, block face-to-block
face non-C(0) continuous connectivity** |

**Steady-state
algorithms for spatially elliptic/hyperbolic and spatially**
** parabolic/hyperbolic equations**
** 1) Runge-Kutta with implicit residual smoothing**
** 2) Diagonalized approximate factorization**
** 3) Incomplete LU (calorically perfect flows only)** |

**
Unsteady algorithms**
** 1) Runge-Kutta**
** 2) Diagonalized approximate with dual time-stepping**
** 3) Incomplete LU with dual time-stepping (calorically perfect flows only)** |

**Convergence
acceleration options:**
** 1) multigrid**
** 2) mesh sequencing** |

**Gas
models**
** 1) Single component calorically
and thermally perfect gases**
** 2) Arbitrary multi-component
mixtures of thermally perfect gases** |

**Chemistry
models**
** 1) Frozen flow**
** 2) Arbitrary, non-equilibrium,
finite-rate chemical kinetics** |

**Inviscid
flux treatments**
** 1) Jameson's central differencing
with artificial dissipation**
** 2) MUSCL kappa scheme of
van Leer**
**
a) Roe's flux difference split scheme with entropy fixes**
**
b) Edwards' low dissipation flux split scheme**
**
c) HLLC scheme of Toro ** |

**Viscous
flux treatments for laminar or turbulent flow**
** 1) Full Navier-Stokes**
** 2) Thin-layer Navier-Stokes**
** 3) Parabolized Navier-Stokes** |

**Mean
flow turbulence model options**
** 1) Spalart-Allmaras**
** 2) Wilcox k-omega (98)**
** 3) Wilcox low Reynolds no.
k-omega (98)**
** 4) Menter k-omega (baseline)
**
** 5) Menter k-omega (SST)**
** 6) Abid low Reynolds no.
k-epsilon**
** 7) Gatski-Speziale EASM k-omega
(98)**
** 8) Gatski-Speziale EASM
k-epsilon** |

**Mean
flow turbulence boundary condition treatment options**
** 1) Wilcox compressible wall
matching ( k-omega based models)**
** 2) Solve to wall (all models)
** |

**Hybrid
RANS/LES options**
** 1) Detached Eddy Simulation (two-equation based model of Strelets)**
** 2) Hybrid RANS/LES model of Baurle and Edwards** |

**Turbulence/chemistry
interaction models**
** 1) Eddy break-up model of Magnussen and Hjertager**
** 2) Temperature fluctuations:
average turbulent reaction rate coefficient**
**
a) Assumed gaussian probability density function (PDF)**
**
b) Assumed beta probability density function (PDF)**
** 3) Species fluctuations: average
species product of concentration using a**
**
multi-variate assumed beta probability density function (PDF)** |