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We describe the extension of a 2-D simplified face-averaged nodal-gradient (F-ANG) method to 3-D
and demonstrate that the 3-D simplified F-ANG method is accomplished by augmenting the node-
centered gradient least squares stencil. This augmented stencil F-ANG method is shown to result in
advection and diffusion schemes that are stable for hexahedral, prismatic, pyramidal and tetrahedral
cells  without  having  to  resort  to  cell-averaged  nodal  gradients.  In  addition,  we  describe  the
modifications  to  the  augmented  stencil  required  to  support  the  use  of  wall  function  boundary
conditions. Finally, we describe a consistent, cell-based multidimensional limiter procedure (MLP), and
show  it  to  be  fully  consistent  with  the  linearity-preserving  unstructured-MUSCL (LP-U-MUSCL)
scheme for all values of kappa. These methods and schema are implemented in the cell-centered finite-
volume code VULCAN-CFD, which is then used to  demonstrate the computation of  3-D hypersonic
canonical problems using tetrahedral and mixed element grids as well as highly adapted tetrahedral
grids.

1. Introduction
Commercial  off-the-shelf  (COTS)  unstructured  grid-generation  tools  have  become  widely  used  by  the

aerospace industry. These tools employ a wide variety of techniques to generate unstructured grids. The techniques can
be divided into three categories; 1)  prismatic cell layers near the wall blended with tetrahedral cells away from the wall,
2) prismatic and/or  hexahedral  cell  layers  near  the wall  blended with hexahedral  cells  away from the wall  and 3)
polygonal layers of cells near the wall blended with polyhedral cells away from the wall. All of these approaches require
that flow solvers support multiple cell types. While unstructured grid generation using these approaches has matured
and is becoming more automated, these tools can still produce grids containing problematic cells. Recent experience has
shown that nonconvex cells and sliver cells are sometimes encountered (usually near boundaries) that can adversely or
catastrophically affect  flow-solver  stability and convergence. Recently,  a  noncommercial  approach to  adaptive  grid
generation referred to as sketch-to-solution or S2S [1] has arisen where a coarse tetrahedral grid is initially generated on
a computational domain defined by the user and a final grid is arrived at by repeatedly adapting the grid to the solution
using feature-based or adjoint-based adaptation  using the  refine code [2]  until some stopping criteria based on  the
convergence of engineering figures of merit is reached. When this approach is applied to hypersonic flows, the resulting
adapted tetrahedral grids will contain high aspect ratio highly skewed tetrahedral cells near walls and shocks. These
high aspect ratio highly skewed cells can make obtaining a solution quite difficult, even when using strong solvers such
as JFNK [3]. Experience has shown that the least-squares gradients used to compute the fluxes and source terms are
significant sources of the numerical difficulties encountered on these types of grids, and that careful attention to the
location, formulation, and use of these gradients is crucial to developing a robust unstructured-grid flow solver. 

Toward that end, over the past several years we have investigated several cell-centered [4-7] and node-centered
[8-10] least-squares gradient methods. This effort led to the relatively recent development of a face-averaged nodal-
gradient approach (F-ANG) that has performed well on pure tetrahedral grids [9],  that was successfully extended to
include nontetrahedral cells by combining F-ANG with cell-averaged nodal-gradients (C-ANG) to yield the face and
cell-averaged nodal-gradient method (FAC-ANG) of Ref. [9]. Even more recently, a face-neighbor augmented stencil F-
ANG method [11] was developed and tested in 2-D that demonstrated improved stability and robustness on problematic
test grids that previously developed methods [4-10] were unable to achieve solutions on. This F-ANG+fn method also
allows the F-ANG approach to be applied to all cell topologies without having to resort to the use of C-ANG for non-
tetrahedral cells. The key feature of the F-ANG+fn method is the augmentation of the node-centered gradient stencils
with additional face-neighbor and/or node-neighbor cells.  The purpose of this paper is to 1) extend the 2-D method
described in Ref. [11]  to 3-D, 2) to show that it is stable for tetrahedral and nontetrahedral grids, 3)  to investigate its
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numerical properties on difficult/challenging grids using laminar and turbulent hypersonic  flows, and 4) to demonstrate
a new cell-based multidimensional limiter procedure (MLP) based on the approach of Park and Kim [12] that is fully
consistent  with  the  linearity-preserving  unstructured-MUSCL (LP-U-MUSCL)  version  [13]  of  Burg's  U-MUSCL
scheme [14], for all values of kappa.

II. Methodology

 A. Role, Importance and Construction of the Gradient.

Solution gradients are perhaps the most important and one of the most difficult quantities  to obtain  accurately
and robustly  on irregular,  unstructured grids.  The solution gradients  are required to  accomplish three things when
computing the residual of the discrete equations for each time step/cycle of the solution process: 1) to perform the
higher-order reconstruction when computing the inviscid fluxes, 2) to compute the cell-face gradient when computing
the viscous fluxes, and 3) to compute the source terms for the turbulence modeling transport equations. Moreover, there
is evidence in the literature that a different definition of the cell-average gradient may be required to compute each of
these quantities [15]. 

While no single gradient method has been found to be accurate for all arbitrary polygons, with some caveats
[16], the weighted least-squares (WLSQ) method has proven to be the preferred method [11,12] for node-centered and
cell-centered 2nd-order finite-volume schemes. The WLSQ gradient method is based on a polynomial fit over a set of
nearby  data.  For  2nd-order finite-volume  schemes,  the  gradients  need  to  be  at  least  1 st-order  accurate  on  general
unstructured  grids;  and  thus,  it  is  sufficient  to  fit  a  linear  polynomial.  For  a  2nd-order  cell-centered  finite-volume
scheme, the authors are aware of at least three distinct ways to compute the gradients. These are to 1) compute the cell-
centered gradient (CCG) directly using a cell-centered linear WLSQ method [4-7], 2) compute the node-centered  (also
known as the nodal gradients (NG)) using a node-centered  linear  WLSQ method [8-10,20-22] and then utilize some
form of nodal- gradient averaging to compute the averaged nodal gradients (ANG) at the cell centroid [20-22] and/or
the cell-face centroids [8-10] or 3) interpolate the cell-average solution to the nodes using a clipped pseudo-Laplacian
interpolation and then compute the cell-centered gradient using Green-Gauss [23]. Of the three methods, we initially
chose to concentrate our efforts on CCG, however, more recently our focus has been on face-averaged variants of the
ANG-WLSQ gradient family of methods.

When faced  with  the  need  to  construct  gradients  on  unstructured  hybrid  grids,  the  methodology used  to
construct the fluxes at the faces of the control volume directly influence how one chooses to construct the gradients.
Therefore, a review of the inviscid and viscous flux construction for a 2-D hybrid grid cell face, shown in red in Fig. 1
follows. 

B. Role of the Gradient in Inviscid Flux Construction

If the inviscid fluxes are computed using an upwind flux scheme, a reconstruction-based 2nd-order finite-
volume cell-centered scheme that utilizes an approximate Riemann solver such as the LDFSS [24] or HLLC schemes
[25],  requires  that  the  inviscid  flux  reconstruction  variables,  q

i  
,  (where  i  indicates  inviscid  state  variables),  be

reconstructed at the left (L) and right (R) sides of the cell-face  centroid,  X,  as shown in Fig. 2-a. The inviscid flux
reconstruction variables are the cell-average variables defined as

                                          qi = (
ρ 1
ρ ,… ,

ρ ncs
ρ , ρ , u , v , w ,P ,k ,ω )  for thermal equilibrium, or,

                                          qi = (
ρ 1
ρ ,… ,

ρ ncs
ρ , ρ , u , v ,w ,T ve , P , k ,ω ) for thermal nonequilibrium,

where
ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ ,u ,v ,w ,T ve ,P , k ,ω are the chemical species mass fractions, from 1 to the number of chemical

species,  static  density,  Cartesian  velocity  components,  vibrational/electronic  temperature,  static  pressure,  turbulent
kinetic energy, and specific turbulent dissipation rate, respectively. A 1st-order accurate scheme results when the cell-
average values, q i k , of the cell to the left, k

L
, and the cell to the right, k

R
, of the cell face are used. A 2nd-order accurate

scheme results when the L and R primitive variables are reconstructed to the cell face midpoint with an extrapolation
method based on the left and right cell-average primitive variables and cell averaged or cell-face averaged  inviscid
gradients, qi kL

, qik R
, and ∇ qi

L ,∇ qi
R , respectively, as given by

                                                                  qi f
L = qi kL

+ ∇ qi
L ⋅ ⃗r L f ,                                                                         (1)

                                                                  qi f
R = qikR

+ ∇ qi
R ⋅ ⃗r R f ,                                                                         (2)

where r⃗ Lf and r⃗ Rf are vectors in Cartesian space drawn from the left and right cell centroids to the cell face centroid,
respectively,  as  shown in Fig.  2-b.  In  addition to  the scheme above,  which is  an unstructured-grid interpretation of
Fromm's  scheme  [26],  it  is  tempting  to  naively  implement  the  higher-order  unstructured-MUSCL  (U-MUSCL)
reconstruction scheme of Burg [14], which is written as
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                                              qi f
L = qi kL

+ χ
2
(qi kR

−qik L
) + (1− χ )(∇ qi

L ⋅ ⃗r L f ) ,                                                (3)

                                             qi f
R = qi kR

+ χ
2
(qi kL

−qik R
) + (1− χ )(∇ qi

R ⋅ r⃗ Rf ) ,                                                 (4)

where χ is used to control the behavior and the 1-D order of accuracy of the scheme when the flow is smooth:
χ =    0,  gives Fromm's scheme, gives a 2nd -order scheme,
χ =   -1,  gives a 2nd-order fully upwind scheme,
χ = 1/3,  gives a 3rd-order upwind biased scheme.

However, Eqs. (3,4) were designed for edge-based schemes utilizing a median dual that explicitly assumes that the cell
face is halfway between qi k L

and qi k R
. Consequently, as Nishikawa has shown [13], when the cell-face centroid is not

halfway between and on the line drawn between the left, k
L
, and right, k

R
, cell centroids, the χ = 1/3 scheme can be

substantially less accurate than the 2nd-order accurate χ = 0 scheme. This makes the use of U-MUSCL problematic
for cell-centered schemes where the cell face is not guaranteed to be halfway between the left and right cell centroids as
well as on the line drawn between the cell centroid, as illustrated in Fig. 2-b. However, Nishikawa proposed a linearity
preserving version of U-MUSCL, i.e., LP-U-MUSCL [13], that recovers 2nd-order accuracy on irregular grids. Figure 3
shows that for an interface between two triangles where the interface is not halfway between the cell centroids, the state
variables can be constructed at alternative locations labeled as k

L
' and k

R
' using Fromm's scheme, that are constructed

such that the cell interface lies halfway between k
L
 and k

R
' when reconstructing the left state, and halfway between k

L
'

and  k
R
 when reconstructing the right state. This intermediate reconstruction step can be combined with Eqs. (3,4) to

yield the LP-U-MUSCL scheme where the left state is computed using

qi f
L = κ

2
(q kL
+qk ' R

) + (1−κ )[qk L
+ ∇ qi

L ⋅ r⃗ Lf ]                                                  (5)

and
qk ' R

= qk R
+ ∇ qi

R ⋅ [r f c
+ (r f c

−rk L
) − rk R

] .                                                     (6)

Similarly, the right state is computed using

qi f
R = κ

2
(q kR
−qk ' L

) + (1−κ )[qk R
+ ∇ qi

R ⋅ r⃗ Rf ]                                             (7)

and
qk ' L

= qkL
+ ∇ qi

L ⋅ [r f c
+ (r f c

−rkR
) − rk L

] .                                                     (8)

Note that χ has been replaced by κ to indicate LP-U-MUSCL. The 1-D accuracy for κ are defined as

κ =    0,  gives Fromm's scheme, gives a 2nd -order scheme,
κ =   -1,  gives a 2nd-order fully upwind scheme,
κ = 1/3,  gives a 3rd-order upwind biased scheme,

which, due to our use of one point flux quadrature, results in these schemes being 2nd-order accurate schemes in 2-D and
3-D.

C. Role of the Gradient in Viscous Flux Construction.

The computation of the viscous flux requires that the cell-face average viscous primitive variable, q v. f , and
the cell-face average gradient of the viscous primitive variables, ∇ qv . f , be computed, where the viscous primitive
variables are, 

  qv f = (
ρ 1

ρ ,… ,
ρ ncs

ρ , ρ , u , v ,w , T , k ,ω )  for thermal equilibrium, or,  

                                     qv f = (
ρ 1
ρ ,… ,

ρ ncs
ρ , ρ , u , v , w ,T ve ,T tr , k ,ω ) for thermal nonequilibrium,            

with T, Tve and Ttr being the static, vibrational/electronic and translational/rotational temperatures, respectively. We have
found that the construction of q v f , should be consistent with the method used to compute the cell-face gradient of the
primitive variable, therefore, we begin by describing the methods that can be used to construct the cell-face gradient.
Hasselbacher [27] observed that computing ∇ qv f as a simple average of the left and right face gradients, i.e.,

                                                                          ∇ qv f=
(∇ qv

L+∇ qv
R)

2
,                                                                       (9)

leads  to  odd-even  decoupling,  which  can  be  alleviated  through  the  introduction  of  face-derivative  augmentation.
Hasselbacher suggested two methods to accomplish this augmentation; 1) edge-normal (EN) and 2) face-tangent (FT)
cell-face gradient  augmentation methods.  The edge-normal  and face-tangent  augmented cell-face gradient  methods
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were studied in Refs. [4,15,28], where the face-tangent method was found to be preferable to the edge-normal method.
Moreover, in Ref. [15], the observation was made that, in many cases, a converged solution could only be obtained
when the face-tangent augmented face-gradient method was used. Therefore, since the edge-normal augmented cell-
face gradient method does not result in a robust method on skewed grids it  will not  be  considered further. In a cell-
centered context,  we define the cell-face viscous primitive variable and face-tangent  augmented cell-face gradient,

q v f , and ∇̂ qv f
FT , respectively as

           q v f =
(qv kL

+qv k R
)

2
and ∇̂ qv f

FT = ∇ qv f − [(∇ qv f ⋅ êLR ) −
(qv kR

− qv k L
)

|⃗eLR|
](

n̂f

n̂f ⋅ êLR

) ,                (10)

where q v kL
and q v kR

are the left and right cell viscous primitive variables, n̂ f , is the cell-face unit normal vector, and

the  vector  connecting  the  left  and  right  cell  centroids, e⃗LR and its  unit  vector êLR are  defined  in  Fig.  2-b.  More
recently, Nishikawa [29] proposed a new approach where the cell-face gradient construction approach is derived from
an advection scheme applied to a hyperbolic diffusion model. The resulting viscous diffusion scheme has a consistent
approximation term and an adjustable high-frequency damping term with a coefficient alpha, and thus, is referred herein
as the alpha-damped scheme.  Nishikawa has shown that the Haselbacher augmentation terms, the bracketed terms in
Eq. (10),  can be interpreted as a high-frequency error damping term. Furthermore, Nishikawa makes the observation
that  this  damping term is  why the  face-tangent  method is  a  robust  scheme on highly skewed meshes.  Nishikawa
attributes this robustness to the face-tangent schemes dependence on the cell skewness term, 1 /(n̂f ⋅ êLR) , which as
skewness increases, (n̂f ⋅ êLR) decreases, thereby increasing damping. 

When  Nishikawa's  hyperbolic  diffusion-based  approach  [29]  is  applied  to  a  cell-centered,  finite-volume
scheme, it results in a reconstruction-based cell-face average gradient, ∇̂ qv f

AD , that includes a damping term that arises
naturally due to an upwind method being used to discretize a hyperbolic diffusion system followed by the extraction of
a scalar diffusion scheme.  In this reconstruction-based cell-face average gradient method, also known as, the alpha-
damped scheme, q v f , and ∇̂ qv f

AD ,   have the form

q v f =
(qv f

L +qv f
R )

2
and ∇̂ qv f

AD = ∇ qv f + α(
n̂f

|⃗eLR ⋅ n̂f|
) (qv

R
f − qv

L
f ) ,                     (11)

where α is a damping coefficient and q v f
L and q v f

R are the left and right higher-order-reconstructed viscous face
state variables. These state variables are reconstructed using Fromm's scheme where

                                                                  qv f
L = q v kL

+ ∇ qv
L ⋅ r⃗L f ,                                                                   (12)

                                                                   qv f
R = q v kR

+ ∇ q v
R ⋅ r⃗R f .                                                                   (13)

The ∇ qv f term  in  Eq.  (11),  is  the  consistent  term  that  approximates  the  face  gradient,  and  the

α(
n̂f

|e⃗LR ⋅ n̂f|
) (qv

R
f − qv

L
f ) term is the adjustable damping term. Note that the alpha-damping scheme reduces to the

face-tangent method when 1) the reconstruction is performed halfway between the two centroids across the face, instead
of at the face, 2) the absolute value is removed from the skewness measure in the denominator, and 3) α = 1.

D. Construction of Gradients for Inviscid Flux, Viscous Flux and Source Terms. 

Equations (1-9) reveal that the inviscid and viscous fluxes require that left and right gradients, ∇ qi
L ,∇ qi

R ,
and ∇ qv

L ,∇ qv
R of the inviscid and viscous primitive variables be computed. Moreover, the computation of turbulent

flow requires the computation of cell-average gradients of the viscous primitive variables for the construction of the
turbulence model source terms. Therefore, a discussion regarding possible approaches using the linear WLSQ method
to compute these gradients, follows.

D.1. Cell-centered weighted least-squares gradients using a cell-centered solution.
The state of the art for the direct computation of cell-centered gradients has been the subject of extensive

research [4-7,15-19]. For a detailed description of the most popular cell-average gradient linear WLSQ methods as well
as a recently developed method based on an analysis of the least-squares coefficient matrix the reader is directed to
Refs. [4 -7]. In the current work, we will consider the most popular cell-average gradient stencils. These are the face
neighbor of face neighbors (fn2-CCG) and node neighbor (nn-CCG) cell-centered gradient stencils illustrated in Figs. 4
and 5, respectively. 

D.2. Node-centered weighted least-squares gradients using a cell-centered cell-average solution.
Zhang [20-22] proposed a  linear  WLSQ 2-D method where the gradients  are computed at  the nodes and

averaged to the cells. Figure 6 presents the stencils required to define the gradients at the nodes, j=1 , 2 ,…, N cell(k )
nodes for

a cell, k, where, N cell (k )
nodes , is the number of nodes that surround cell k, on grids made up of triangular and quadrilateral

control volumes, respectively. These nodal gradients can, in turn, be used to construct face-averaged nodal gradients (F-
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ANG), and the cell-averaged nodal gradients (C-ANG) [7,10]. To compute the gradient of a solution variable  q at a
node, j, we use the set, {l j}of Nj ≥ 4, of the nearby cells that share the node (i.e., a gradient stencil).  It is important to
note that the solution values are not available at the nodes because numerical solutions are stored at cells in the cell-
centered finite-volume method. As pointed out by Zhang [20-22],  the solution value at  the node is included as an
additional unknown when formulating the least-squares problem. Therefore, in 3-D, for node-centered linear WLSQ, we
fit a linear polynomial over {lj} such that:

                                     ql=q j+∂x q j dxl , j+∂ y q j dyl , j+∂z q j dz l , j ,  l  ∈ {lj},                                           (14)

where,  dxl,j = (xl-xj),  dyl,j = (yl-yj), and dzl,j = (zl-zj),  are the distance from node j to cell l of the set of neighbor cells, l,
(xj, yj, zj) and (xl, yl, zl) denote the coordinates of the node, j, and cell, l, respectively, and (q j, ∂x q j , ∂ yq j, ∂zq j) is the
vector containing the solution and its derivative that we wish to compute at node j. To determine the unknowns, we need
at least three and four cells around the node in 2-D and 3-D, respectively. For interior nodes, such as shown in Fig. 6,
there are always sufficient cells available for the LSQ problem to be solved.   Following Zhang [20-22], we employ the
linear WLSQ formulation:

                                                                                          A x = b,                                                                                   (15)
where

A =

w1
n

⋮
w l

n

⋮
wN j

n

w1
ndx1 , j

⋮
wl

n dxl , j

⋮
wN j

n dx N j , j

w 1
ndy 1 , j

⋮
w l

ndyl , j

⋮
wN j

n dy N j , j

w1
n dz1 , j

⋮
w l

n dzl , j

⋮
wN j

n dz N j , j

, x =

q j

∂x q j

∂y q j

∂z q j

, b =

w1
n q1

⋮
w l

nql

⋮
wNk

n qN j

,                               (16)

l=1-Nj are the cells in the stencil of node j, and w l
n is the weight applied to the equation corresponding to the stencil 

cell l. The following inverse-distance weight is widely used in finite-volume methods:

                                                   w l
n= 1

dl
p( n) , d l=√dx l , j

2 +dyl , j
2 +dzl , j

2 ,                                                   (17)

where p(n) is a parameter ranging from zero (unweighted LSQ) to one (fully weighted LSQ) and n =1, 2, or 3, where
n=1 refers to the parameter used for the linear WLSQ gradients used in the inviscid flux reconstruction, n=2 refers to
the parameter used for the linear WLSQ gradients used in the construction of the cell-face gradients for the viscous flux
and n=3 refers to the parameter used for the linear WLSQ gradients used in the construction of turbulence model source
terms. In our work, we typically set p(1)=0 and p(2,3)=1. The overdetermined  linear  WLSQ system defined by Eqs.
(15-17),  can  be  solved  in  various  ways.  However,  we  choose  to  use  QR  factorization  via  the  Householder
transformation [30], which directly solves the over determined system as
                                                                                        x = R−1Qb,                                                                                (18)
where Q is the orthonormal matrix and R is the upper triangular matrix generated from A by the QR factorization. The 
solution can then be expressed in the following form:

                                                                        ∇ q j =

q j

∂x q j

∂ y q j

∂z q j

= ∑
l∈ {l j}

c jl
q

c jl
x

c jl
y

c jl
z

ql ,                                                            (19)

where  cq
jl,  cx

jl,  cy
jl,  and  cz

jl are the  linear  WLSQ coefficients to be computed and stored at all nodes once for a given
stationary grid. From Eq. (19), it is clear that the cost of the gradient calculation is directly proportional to the number
of neighbors involved in the node WLSQ stencil. Furthermore, since we choose to not use the solution value at the
node, we only need to store the coefficients for the gradient, such that:

                                                      ∇ q j =
∂ x q j

∂ y q j

∂ z q j

= ∑
l∈ {l j}

c jl
x

c jl
y

c jl
z

ql .                                                            (20)

         As previously mentioned, there are 3 approaches that use nodal gradients to compute the gradients needed to
compute the cell-face fluxes. These are the C-ANG approach of Zhang [20-22], which he refers to as a vertex-weighted
least-squares (VWLSQ(n)) approach where n is the least-squares weight coefficient, the F-ANG approach of Nishikawa
and White [9] and the F-ANG+fn augmented approach of Nishikawa and White[11]. 

In  the  C-ANG  approach,  the  inviscid  and  viscous  cell-nodal-averaged  gradients, ∇ qik and ∇ qvk ,
respectively, are constructed as the arithmetic average of the nodal gradients from the nodes that define the cell with

∇ qi k = [∑
j=1

Ncell(k )
nodes

∇ qi j ] /N cell(k )
nodes ,                                                                (21)
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∇ qv k = [∑
j=1

N cell (k)
nodes

∇ qv j ] /N cell(k)
nodes ,                                                                (22)

where N cell(k )
nodes is 3 or 4 in 2-D for triangles or quadrilaterals cells, respectively, and 4, 5, 6 or 8 in 3-D for tetrahedral,

pyramidal, prismatic or hexahedral cells, respectively. These cell average gradients are then used to define the inviscid
and viscous left and right gradients, ∇ qi

L ,∇ qv
L ,∇ qi

R , and ∇ qv
R that appear in Eqs. (1-13) to compute the inviscid

and viscous fluxes where
    ∇ qi

L = ∇ qikL
and ∇ qi

R = ∇ qi kR
                                                           (23)

                                                         ∇ qv
L = ∇ qv kL

and ∇ qv
R = ∇ qv k R

                                                          (24)

where ∇ qi kL
,∇ qik R

and ∇ qv k L
,∇ qv kR

are  the  left  and  right,  inviscid  and  viscous,  C-ANG  WLSQ  gradients

respectively, defined by Eqs. (20,21,22). 

In  the  F-ANG  approach,  the  inviscid  and  viscous  face  nodal  averaged-gradients, ∇ qif and ∇ qvf ,
respectively, are computed as the arithmetic average of the nodal gradients from the nodes that define the cell face with

∇ qi f = [∑
j=1

N face (m)
nodes

∇ qi j ] /N face (m)
nodes ,                                                                (25)

∇ qv f = [∑
j=1

N face (m)
nodes

∇ qv j ] /N face(m)
nodes ,                                                                (26)

where N face (m )
nodes is the number of nodes that define a face,  m, which is 2 in 2-D, and 3 or 4 in 3-D for triangular and

quadrilateral faces, respectively. These face-averaged gradients, are then used to define the left and right inviscid and
viscous gradients, ∇ qi

L ,∇ qi
R and ∇ qv

L ,∇ qv
R that appear in Eqs. (1-13). As was noted in Refs. [8-10], the F-ANG

approach results in the following condition with respect to the left and right inviscid and viscous gradients

∇ qi
L = ∇ qi

R = ∇ qi f ,                                                                     (27)

∇ qv
L = ∇ qv

R = ∇ qv f .                                                                     (28)
There are three reasons that the average nodal gradient approach is potentially superior to the conventional cell-average
gradient  method.  First,  the  number  of  nodes  is  typically  smaller  than  the  number  of  cells  in  unstructured  grids,
especially in 3-D on tetrahedral grids, where it is 5-6 times smaller, thus requiring less storage for the gradients (if one
chooses to store them). Moreover, if the nodal gradients are computed using a least-squares method, as described in
Eqs. (14-20), using the cells surrounding the node, the number of coefficients that need to be computed and stored can
be significantly smaller than that required for the cell-centered least-squares method for cell gradients described in
section D.1. Second, the face gradient involves fewer cells than the average of cell gradients at a face, which results in a
reduction in the size of the residual stencil and third, since the gradients are computed at the cell nodes, then, depending
on  how the  gradient  limiting  is  performed,  there  may  be  no  need  to  communicate  gradient  information  between
processors.

D.2.1. Stable Techniques for Using Unaugmented Node-Centered Gradients to Construct the Inviscid Flux. 

In the case of the 2-D hybrid grid cell face shown in red in Fig. 1, three approaches for computing the gradients
required to construct the inviscid flux at the cell face are illustrated in Fig. 7, where  lt and  lq denote stencil cells
associated with triangular and quadrilateral cells, respectively. The three approaches are: a) the F-ANG approach [10],
b) the C-ANG approach [20-22], and c) the hybrid face and cell-averaged nodal gradient approach (FAC-ANG) in Ref.
[8,9]. Figure 7-a shows that F-ANG results in the most compact flux stencil while Fig. 7-b shows that C-ANG results in
the least compact stencil. In Ref. [9], it was shown, via Fourier analysis, that inviscid fluxes computed using F-ANG are
unstable on quadrilateral grids, implying that computing inviscid fluxes using F-ANG will also be unstable on hybrid
grids containing quadrilaterals.  However, Zhang has shown in Refs. [20,21] that the C-ANG approach is stable on
triangular, quadrilateral, and hybrid grids. Therefore, to obtain a stable inviscid flux and the smallest possible residual
stencil on hybrid grids, the FAC-ANG approach was proposed in Ref. [9]. FAC-ANG, as illustrated in Fig. 7-c, uses F-
ANG for the on the triangular cell side of the red interface and C-ANG for the on the quadrilateral cell side of the red
interface. The extension of FAC-ANG to 3-D on hybrid grids that may include tetrahedral, pyramidal, prismatic and/or
hexahedral cells is more complicated and can be found in Ref. [8].

D.2.2. Stable Techniques for Using Augmented Node-Centered Gradients to Construct the Inviscid Flux.

Recently a new approach to using node-centered gradients on hybrid grids in 2-D that allows the F-ANG
approach to be used on triangles and quadrilaterals was described in Ref. [11]. This approach is based on augmenting
the baseline node-centered stencil with face-neighbor cells of the cells that define the node-centered gradient stencil.
Figures 8-a and 9-a show several possible stencils around a node in triangular- and quadrilateral-based grids. The cells
tagged with a black number 2 are the baseline F-ANG stencil cells and cells tagged with a green number 3 are the
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aforementioned face neighbor (fn) cells. There are also cells tagged with a red number 4 that are the cells that are node-
neighbors  (nn)  of the cells  that  define the node-centered gradient  stencil  that  are not already tagged as  cell  face-
neighbors. We choose to adopt a stencil naming convention  where F-ANG+fn refers to the stencil that is the sum of the
cells tagged 2 and 3 and FANG+nn refers to the stencil that is the sum of the cells tagged as 2, 3 and 4. Likewise,
Figures 8-b and 9-b present the residual stencil of the F-ANG+fn and FANG+nn stencils. The stability of F-ANG+fn for
advection on regular quadrilaterals was demonstrated by Nishikawa and White in Ref. [11] using Fourier analysis.
Moreover,  numerical  experiments performed in Ref. [11] demonstrated that  F-ANG+fn outperformed all previously
tested approaches on 2-D high aspect ratio highly curved grids.  Figures 10-a and b present a comparison of the FAC-
ANG and C-ANG face node stencils with the F-ANG+fn and F-ANG+nn face node stencils applied to a 2-D hybrid
grid. This comparison shows that the F-ANG+ face stencils are bigger than the FAC-ANG stencil and C-ANG stencils.
Experience has shown, in 2-D and 3-D, that bigger stencils are usually more stable than smaller stencils. Therefore,
since the FAC-ANG and C-ANG approaches have been demonstrated to be stable for advection in 2-D and 3-D, and the
F-ANG+fn approach has  been demonstrated to be stable via analysis and numerical  experiments  in  2-D, it  seems
reasonable that this approach will also be stable for advection in 3-D on hybrid grids due to its bigger stencil. 

D.2.3. Stable Techniques for Using Augmented Node-Centered Stencils to improve the accuracy of the gradients.

Recognizing that that the augmented F-ANG stencils are bigger and therefore more expensive, we attempt to
take advantage of the bigger stencil to increase accuracy by using quadratic WLSQ instead of linear WLSQ when the
stencil is big enough. To compute the WLSQ gradient of a solution variable q at a node, j, we use the set, {l j}of Nj ≥ 10,
cells near the node. Using the same notation as in Eqs. (14-17) a 3-D node centered quadratic WLSQ fit may be derived
by fitting a quadratic polynomial over the set of cells near the node j, {lj} such that:

ql=q j+∂x q j dxl , j+∂ y q j dyl , j+∂z q j dz l , j+
1
2

∂x
2 q jdx l , j

2 + 1
2

∂ y
2 q j dyl , j

2 +1
2

∂z
2q j dzl , j

2 +∂xy q jdxdy l , j+∂ xzq j dxdz l , j+∂ yz q j dydz l , j ,

l  ∈ {lj},                                                                                   (29)

where,   dxdyl,j  = (xl-xj)(yl-yj),   dxdzl,j  = (xl-xj)(zl-zj),  and  dydzl,j  = (yl-yj)(zl-zj),  are the cross products of the Cartesian
distances from the node  j  to the cells,  l.  and (q j, ∂x q j , ∂ yq j, ∂zq j, ∂x

2q j , ∂ y
2q j, ∂z

2q j, ∂ xyq j, ∂xz q j , ∂ yzq j) is  the vector
containing the  solution and  its  first  and  second derivatives.   As in  the  linear  WLSQ formulation,  we employ the
quadratic WLSQ formulation written as

                                                                                          A x = b,                                                                                   (30)
where

A =

w 1
n

⋮
w l

n

⋮
w N j

n

w1
ndx1 , j

⋮
wl

n dxl , j

⋮
w N j

n dx N j , j

w 1
ndy 1 , j

⋮
w l

ndyl , j

⋮
wN j

n dy N j , j

w1
n dz1 , j

⋮
w l

n dzl , j

⋮
wN j

n dzN j , j

1
2

w1
n dx1 , j

2

⋮
1
2

wl
n dxl , j

2

⋮
1
2

wN j

n dx N j , j
2

1
2

w1
n dy1 , j

2

⋮
1
2

wl
n dyl , j

2

⋮
1
2

wN j

n dy N j , j
2

1
2

w1
ndz1 , j

2

⋮
1
2

wl
n dzl , j

2

⋮
1
2

wN j

n dz N j , j
2

w1
n dxdy1 , j

⋮
w l

ndxdy l , j

⋮
wN j

n dxdyN j , j

w 1
n dxdz1 , j

⋮
w l

ndxdz l , j

⋮
wN j

n dxdzN j , j

w 1
n dydz1 , j

⋮
w l

ndydz l , j

⋮
wN j

n dydzN j , j

x =

q j

∂x q j

∂ y q j

∂z q j

∂x
2 q j

∂ y
2 q j

∂z
2 q j

∂xy
2 q j

∂xz
2 q j

∂ yz
2 q j

, b =

w 1
n q1

⋮
w l

nql

⋮
wN j

n q N j

,                                                            (31)

As with linear WLSQ we solve this set of equations using QR factorization. However, since we 

1. Do not require the solution at the nodes and

2. are using a 2nd-order method and thus only require the gradient.

we only need to store the least squares coefficients required to compute the gradient. From Eq.(20), these coefficients
are cx

jl, cy
jl and cz

jl . Comparing these coefficients to the coefficients that can be obtained by solving the quadratic WLSQ
problem.  Equation (32) reveals that the gradient coefficients we require are the 2nd, 3rd, and 4th entries in the column
vector.
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q j

∂x q j

∂ y q j

∂ z q j

∂x
2 q j

∂ y
2 q j

∂ z
2 q j

∂ xy q j

∂ xz q j

∂ yz q j

= ∑
l∈ {l j}

c jl
q

c jl
x

c jl
y

c jl
z

c j
x2

c j
y2

c j
z 2

c jl
xy

c jl
xz

c jl
yz

ql                                                                      (32)

Therefore the gradient coefficients can be easily obtained and stored for use in computing the WLSQ gradient from the 
coefficients that result from the solution of the quadratic WLSQ problem. This means that 

1. The storage needed to compute the gradient does not change 
whether one is using linear or the quadratic WLSQ.

2. The code needed to compute the gradient is the same
whether one is using linear or the quadratic WLSQ.

3. The cost associated with using quadratic WLSQ to compute the gradient
is only a one time preprocessing cost associated with solving the quadratic 
WLSQ problem to obtain the coefficients required to compute the gradient.

The absolute minimum number of  cells  required to  compute the node centered quadratic  WLSQ is  10.  However,
experience has shown that it is preferable to compute the gradient using the quadratic WLSQ coefficients when the
stencil contains 25 cells or greater. Therefore, when computing the WLSQ coefficients, the linear WLSQ problem is
solved if the node-centered stencil contains less than 25 cells and the quadratic WLSQ problem is solved if the stencil
contains  at  least  25 cells.  Table 1 presents the max stencil  sizes  for  a  regular  tetrahedral  grid constructed from a
hexahedral grid where there are 6 tetrahedra per hexahedral cell and a hexahedral grid for the F-ANG, F-ANG+nf and
F-ANG+nn stencils.

Table 1 Stencil statistics for hexahedral and regular tetrahedral grids.

F-ANG F-ANG+nf F-ANG+nn

Hexahedral cells 8 32 64

Regular Tetrahedral cells 24 48 192

This  table  clearly  demonstrates  that  either  of  the  augmented  node-centered  gradient  stencils  are  large  enough  to
effectively support the computation of gradients using the WLSQ coefficients obtained by solving a quadratic WLSQ
problem. Moreover on tetrahedral grid the F-ANG+nn stencil should only be used when it is not possible to get a well
posed stencil with either F-ANG or F-ANG+nf due to its extremely large size.

 D.2.4 Stable Techniques for Using Node-Centered Gradients to Construct the Viscous Flux.

In Ref. [9], it was shown that using F-ANG to compute the viscous fluxes is stable for any cell topology due to
the damping terms in the viscous flux construction Eqs. (10,11). This is the approach adopted for computing 3-D flow
in this work.

D.2.5. Construction of Gradients for Turbulence Transport Equation Source Terms.

The  turbulence  transport  equation  source  terms  require  the  computation  of  cell-average  gradients  of  the
viscous variables. In the current work, these gradients are formed using the cell average of the viscous WLSQ node-
centered gradients. These node-centered gradients are only needed for the cells in the interior of the computational
domain eliminating the need to communicate them between processors when using a parallel processing paradigm. 

E. Inviscid Flux Cell-Average Gradient Limiter Construction using LP-U-MUSCL.
Being primarily interested in the computation of hypersonic flows containing strong discontinuities, gradient

limiters are crucial to the development of a robust numerical scheme. Therefore, the current gradient limiter approach is
based on the modified version of  MLP approach of Park and Kim [12] extensively described in Refs. [4,6,7,8]. The
MLP gradient  limiter  stencil  for  reconstruction at  a  cell  face on a mixed-element grid,  when using node-centered
gradients, is illustrated in Fig. 8-11 where the limited left- and right-reconstructed states can be obtained using Fromm's
scheme
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                                                                   qi f
L = qi kL

+ Φ k L

MLP ∇ qi
L ⋅ r⃗ Lf                                                                (33)

qi f
R = qikR

+ ΦkR

MLP∇ qi
R ⋅ r⃗R f                                                                (34)

where Φ kL

MLP and Φ kR

MLP are limiter functions at cells kL and kR, respectively.  Due to our interest in the LP-U-

MUSCL scheme, we employ a suggestion from Ref.[13], where Eqs.(5,7) are rewritten to incorporate a gradient limiter
such that

qi f
L = qk L

+ Φ kL

MLP{Φ kL

MLP κ
2
(qk L
−qk 'R

) + (1−κ )[∇ qi
L ⋅ (r f c

−rk L
)]} ,                                   (35)

qk ' R
= qk R

+ ∇ qi
R ⋅ [r f c

+ (r f c
−rk L

) − rk R
]       and                                        (36)

qi f
R = qk L

+ Φ kR

MLP{Φ kR

MLP κ
2
(qk R
−q k ' L

) + (1−κ )[∇ qi
R ⋅ (r f c

−r kR
)]} ,                              (37)

qk ' L
= qkL

+ ∇ qi
L ⋅ [r f c

+ (r f c
−rkR

) − rk L
]                                                     (38)

where Φ kL

MLP and Φ k R

MLP are MLP gradient limiter coefficients evaluated for the left and right cells when any gradient

construction approach is used to form ∇ qi
L or ∇ qi

R . The “original” MLP limiter coefficient approach, described in
detail in Ref. [7], constructs the limiter coefficient by looping over cells and then looping over the nodes that define the
cell using Fromm’s scheme to reconstruct the primitive variables to the nodes as shown in Fig. 11-a. However, when
using the LP-U-MUSCL scheme to reconstruct the primitive variables for the inviscid flux, using Fromm’s scheme to
perform the reconstruction in the limiter  is  inconsistent.  Therefore,  in an effort  to make the limiter  reconstruction
consistent with the inviscid flux reconstruction, we revisit an idea originally presented in Ref. [9] where the limiter is
constructed by looping over the nodes that define the face inside of a loop over faces, as shown in Fig. 11-b. In this loop
over faces approach, the limiter coefficients in the left and right cell,  Φ kLR

MLP at the cell and the left and right limiter

coefficients each node that define the face, Ψ n ,m
L, R , are computed for each pair of cells that share a face, ie. the left (L)

and right (R) cells using

Φ kL , R

MLP=min(1 ,min(1 ,[Ψ n ,m
L, R , n=1→N nodes

m ]) ,m=1 ,→N faces) ,                                             (39)

Ψ n ,m
L,R={ϕL ,R(

qm
max (face node stencil cells)−qkL, Rm

qi f m
L ,R−q

k L, R
m

) , if qi fm
L,R>q

kL ,R
m

ϕL,R(
qm
min( face node stencil cells)−qk L, Rm

qi fm
L,R−qkL, Rm

), else if qi fm
L,R<qkL, Rm

1 else if qi f m
L, R=q

k L, R
m

.                                              (40)

where qi fm
L,R and qk L, Rm are the left and right reconstruction of the solution to the cell node and the solution in the left and

right cells respectively. It should be noted that the qm
min and qmax in Eq. (40) are the minimum and maximum values of

the solution in the cells that make up the union of the WLSQ gradient stencils at the nodes that define the cell face. The
left and right cell limiter coefficients, ΦkL , kR

MLP , are then computed as the minimum of the current cell coefficients and the

left and right face node limiter coefficients.  This looping over faces allows the use of LP-U-MUSCL in the limiter
because, as is the case when reconstructing for the flux, the data from the both cells that share the face are available for
use in Eqs. (39-40) to construct the limiter coefficients without an ambiguity. Finally, it is important to note that one
drawback of this approach is that the node limiter coefficients are computed multiple times due to the nodes being
shared between faces.

F. Additional Pressure Limiting.

In hypersonic flow, it has been noted by others [31-33] that due to the extremely strong shocks that can be
encountered, it is sometimes necessary to add additional limiting at the shocks by incorporating a pressure based shock
limiter. This limiter is sometimes referred to a pressure limiter. In our case, we incorporate a pressure limiter into our
gradient limiter procedures. In the case of the LP-U-MUSCL face loop limiting procedure, we incorporate the  approach
described by Gnoffo[33] where the face pressure limiter is computed for the left and right cells using
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Ψ p
L, R={ 1 if (∇ Pm ⋅ V⃗ ≤ 0)

1
2
⟨1−cos [ψ p

L,R(Pratio)π ]⟩ if (∇ P
m ⋅ V⃗ >0)

                                        (41)

where

ψ p
L,R(Pratio )={ 1 if (Pratio≤2)

(4−Pratio)/2 if (2<P ratio<4) ,
0 if (Pratio≥4 )

                                                        (42)

Pratio=max (P f m
L ,R /Pm

max)/min(Pf m
L,R/Pm

min),                                                          (43)

and Eq. (39) is modified to be

Φ kL , R

MLP=min(1 ,min(Ψ p
L, R ,min([Ψ n ,m

L,R , n=1→Nnodes
m ]),m=1 ,→N faces)) .                                      (44)

III Numerical Results and Discussion

A. 2-D Structured Grid Resolution Study of  Hypersonic Laminar Flow Over a 2-D Flat  Plate on a regular
tetrahedral grid.

The  first  numerical  experiment  chosen  to  investigate  the  numerical  behavior  of  the  3-D  extension  and
implementation of F-ANG+ is performed on a family of regular tetrahedral grid for a canonical 2-D hypersonic laminar
boundary layer flow. However, before computing these unstructured solutions, a “reference” solution is needed to allow
the accuracy of the unstructured solutions to be assessed. Therefore, a 2-D grid resolution study was performed using
the VULCAN-CFD 2-D structured grid solver on a family of 5, 2-D structured grids, consisting of 101x77, 201x153,
401x305, 801x609 and 1601x1217 grid nodes, respectively. Figure 12 presents a plot of the 101x77 grid used where
every other grid line has been removed for clarity. This numerical experiment was conducted by computing thermally-
prefect, chemically-frozen, turbulent flow of air over a 2-D flat  plate with freestream conditions of Mach number,
M

ref
=6.0,  static  pressure,  P

ref
=  2100.0  Pa,  static  temperature,  T

ref
=  63.01  K,  and  unit  Reynolds  number,  Re

ref
=

2.64x107/m, with the wall treated as an isothermal (335.83 K) condition. These computations were performed using
inviscid fluxes computed using Edward's LDFSS scheme [24] with reconstruction performed using a  structured grid
MUSCL scheme [39] with κ=1 /3. No gradient limiters were used. The wall heat transfer distribution results using
these 5 grids are presented in Fig. 13. Examination of Fig. 13 reveals that, although a grid resolved wall heat transfer
distribution appears to have been achieved over the majority of the flat plate axial length using the 801x609 grid, we
will use the 1601x1207 grid solution as our reference. 

B. Hypersonic Laminar Flow Over a 2-D Flat Plate Using a Regular Tetrahedral Grid.

Having produced a reference 2-D solution, we now turn to the tetrahedral unstructured grid version of this
problem. Since we are primarily interested in 3-D, we choose to use only tetrahedral grids since they are inherently 3-D
even for 2-D geometries. The first 3-D numerical experiment was chosen to investigate the numerical behavior of the 3-
D extension and implementation of F-ANG+ on a pure tetrahedral  grid using a canonical  2-D hypersonic laminar
boundary layer flow. This numerical experiment was conducted by computing thermally-prefect, chemically-frozen,
turbulent flow of air over a 2-D flat plate with the same freestream conditions that were run to compute the “reference”
solution.  The  inviscid  fluxes  were  computed using  Edward's  LDFSS  scheme  [24]  and  LP-U-MUSCL  [12]  with
κ=0 or κ=1 /3. No gradient limiters were used. The viscous fluxes were computed using Nishikawa's alpha-

damped  scheme  [28]  with α=4 /3. The  2-D  geometry  was  discretized  to  form  a  3-D  computational  domain  by
generating a regular tetrahedral grid starting from a 3-D structured grid. A series of 3-D tetrahedral grids were generated
from 51x39x3, 101x077x5, 201x153x9, and 401x305x17 node 3-D structured grids, which are, in turn, based on the 2-
D structured girds used to compute the “reference” solution. The resulting tetrahedral grids contained 22,800, 182,400,
1,459,200 and 11,673,600 cells, respectively. An oblique view of the 51x39x3 node grid is shown in Fig. 14. The
boundary  conditions  were:  1)  reflection  of  all  variables  at  the  min.  and  max.  Y-direction boundary  cell  faces,  2)
specification of all variables on the min. X-direction boundary cell faces, 3) 1 st-order extrapolation of all variables at the
max. X- and Z-direction boundary cell faces and 4) a no-slip, isothermal, solve-to-the-wall BC on the min. Z-direction
wall boundary cell faces. The computational domain was decomposed into 6 partitions for the smallest grid and 24
partitions for the remaining grids. The governing equations were solved implicitly, using local time stepping, and the
global CFL number was linearly varied from 0.1 to 250 over iterations 1 to 500. A grid resolution study using the 4
unstructured grid described above was performed using the F-ANG+fn approach. Additional isolated computations were
performed using the nn-CCG, F-ANG and F-ANG+fn approaches on the 201x153x9 node grid to allow the comparison
of the various approaches under consideration. 
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Table  1  presents  the  stencil  statistics  of  the  nn-CCG  and  two  node-centered  F-ANG  approaches  for
computations performed using this 201x153x9 node grid. In addition, the cost, and relative cost, of computing the
WLSQ gradients, where the cost is defined as the number of WLSQ locations (the number of cells for the cell-centered
gradient and the number of nodes for the node-centered gradient approaches, respectively), times the mean stencil size.
These figures of merit show that the node-centered gradient approach produced stencils that are smaller than the nn-
CCG approach in the mean. Table 1 also reveals that the F-ANG and F-ANG+fn approaches requires approximately
6.2% and 11.9% of the nn-CCG methods storage and operations to compute the gradients, respectively.

Table 1. Stencil statistics and cost of the gradient approaches used to compute 
the 2-D flat plate using a 201x153x9 node tetrahedral grid. 

WLSQ 
Gradient
Approach

Number of
WLSQ
Stencils

Minimum
Stencil

Size

Mean
Stencil

Size

Maximum
Stencil

Size

Stencil Size
Standard
Deviation

WLSQ Cost
(No. of Stencils x

Mean Stencil Size)

WLSQ
Relative

Cost 

nn-CCG 1,459,200 (cells) 19 66.9 106 8.5 97,620,480 1.0

F-ANG 276,777 (nodes) 6 22.0 46 4.0 6,089,094 0.062

F-ANG+fn 276,777 (nodes) 8 42.0 91 10.0 11,624,634 0.119

Wall axial heat  transfer results from the tetrahedral grid resolution study using the F-ANG+fn scheme are
shown in Fig. 15-a. These results show that the wall axial heat transfer distribution is not grid converged between the
leading edge and x=0.15 meters even on the finest grid. However for x=0.15 to the trailing edge the results look fairly
well converged with the unstructured solver giving a wall heat transfer slightly higher than the structured solver. As
mentioned above we then selected this 201x153x9 node tetrahedral grid and compare results using the nn-CCG, F-ANG
and F-ANG+fn schemes. As shown in Figs. 15-b and 15-c, we find that all methods tested have similar accuracy. Only
by magnifying the region near the trailing edge of the flat plate, as in Fig. 15-c, do we see differences in the solutions,
with the F-ANG+fn giving solutions closest to the structured grid. Three of these solutions, using the nn-CCG, F-ANG
and F-ANG+fn approaches were computed using κ =0 , and a fourth solution using the F-ANG+fn approach was
computed using κ =1 /3. Figure 15-c reveals that the change in κ only slightly improved the solution, which is not
surprising given that this is a diffusion dominated flow.

C. Hypersonic Laminar Flow Over a 2-D Flat Plate Using Output adapted Tetrahedral Grid.

As mentioned in the introduction the sketch-to-solution (S2S) grid adaptation workflow [1] using the  refine
grid adaptation code [2]  has been developed. The infrastructure to support this approach was recently implemented in
the VULCAN-CFD software suite [3] where an extensive discussion of the challenges and pitfalls of S2S are discussed.
In the S2S approach, a final grid is arrived at by repeatedly adapting the grid to the solution using feature-based or
adjoint-based adaptation repeatedly until some stopping criteria based on convergence of engineering figure(s) of merit
is reached. As VULCAN-CFD does not currently support an adjoint capability, we have pursued the feature based
approaches described in Ref. [3]. Since the current grid paradigm used within refine is tetrahedral-based we have been
motivated to invest considerable effort [5-11] to develop cell-centered advection, diffusion and source term operators
that are robust on highly skewed tetrahedral grids. The flat plate problem described in sections III-A and III-B above
was therefore chosen to explore the ability of  S2S to predict wall heat transfer with sufficient fidelity to serve as an
engineering figure of  merit.  The numerical  techniques utilized were the same as employed in the computations in
section III-B above. In addition, the SGS defect-correction scheme was used instead of the more expensive JFNK
procedure described in Ref. [3]. Because this test has a very weak leading edge shock, the grids were adapted to a total
enthalpy Hessian. Figure 16 presents the wall heat transfer distribution obtained after 29 grid adaptations and a grid
containing on the order of 6.4x105 tetrahedral cells while Fig. 17 presents several views of the tetrahedral unstructured
adapted grid produced by refine.

D. Hypersonic Turbulent Flow Over a 2-D Backward Facing Step Using Prismatic and Hexahedral Cells.

In order to test that all the F-ANG+ methods work properly on a mixed element grid and to demonstrate the behavior
of the pressure limiter modification described in Eqs. 35-40, numerical experiments were conducted computing hypersonic
calorically perfect, turbulent flow of air over a 2-D backward-facing step. The freestream conditions were, Mach 6.356,
static pressure,  P

ref
= 50,662.58 Pa, static temperature,  T

ref
= 1297.75 K, ratio of specific heats, γref = 1.4, and unit

Reynolds number, Re
ref

= 1.2891x107/m, with the wall treated as isothermal (1172.6 K), using a turbulent wall matching

boundary condition [38].  The Wilcox  (1998) k−ω two-equation turbulence  model  [38] was  used to  compute the
Reynolds  stresses  and  Reynolds  heat  flux  (Pr

t
=0.9)  and  the  turbulence  model  production  term was  based  on  the

magnitude of the vorticity. The nodal gradients were computed using weighted linear least-squares with the FANG+ fn
method. The inviscid fluxes were computed using the LDFSS scheme with the higher-order cell-face states constructed
using LP-U-MUSCL, κ =1 /3 , with the cell-average gradients limited using the loop over faces based approach to
computing the κ consistent MLP gradient limiter approach illustrated in Fig. 11-b) and the Park and Kim MLP-u2
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limiter function. The viscous fluxes were computed using the Nishikawa cell face gradient method. The governing
equations were solved implicitly using the SGS defect correction scheme described in Ref. [4], with local time stepping
and the CFL number linearly varied from 0.1 to 250 over time steps 1 to 500. Convergence was achieved by “freezing”
the gradient limiter after 600 time steps to prevent convergence stalling due to limiter “ringing”. The computations were
stopped when the residual L

2
 norm had dropped to machine zero. The 2-D geometry was discretized to form a 3-D

computational domain using the Pointwise® unstructured grid generator. The resulting grid consisted of triangular and
quadrilateral 2-D cells, as shown in Fig. 18, extruded in the Z-direction to form a 3-D grid of 15,781 prismatic and
8,168 hexahedral cells for a total of 23,949 cells. The boundary conditions were: 1) reflection of all variables at the min.
and  max.  Z-direction boundary  cell  faces  (Symmetry  Boundary),  2)  specification of  all  variables  on the  min.  X-
direction boundary cell faces (Inflow Boundary), 3) 1st-order extrapolation of all variables at the max. X and Y-direction
boundary cell faces (Outflow Boundary) and 4) isothermal no-slip wall-matching construction of all variables on the
min. Y-direction wall boundary cell faces (No-slip Isothermal Wall). The computations were performed using parallel
processing on 6 partitions. Results are presented for computations without use of the pressure limiter and with and
without eliminating limiting when expansion is present. Figure 19 presents Mach contours for three computations; 1)
without the pressure limiter, 2) with the pressure limiter and 3) with the pressure limiter constrained to compression
only. This figure clearly demonstrates the detrimental effects of using the pressure limiter and how the compression
only limiter mitigates some of these detrimental effects. It should also be noted that the effect of the dissipation added
by the compression only limiter can also be seen in Fig.  19 as a reduction in the length of the separation bubble
downstream of the backward facing step.

E. Hypersonic Turbulent Flow Over a Notional Scramjet Fuel injector Using Tetrahedral, Prismatic, Pyramidal
and Hexahedral Cells.

The third numerical experiment was conducted by computing hypersonic, thermally prefect, chemically frozen,
turbulent flow over an isolated notional scramjet fuel injector strut. The freestream conditions were:

 
P

ref
= 50,662.5 Pa,

T
ref

=  1,297.7 K,
 
and Mach number,  M

ref
=  6.35. A thermally perfect mixture  two species,  O2 and N2, having mass

fractions of 0.767 and 0.233 respectively was used to simulate the test gas, which at the given conditions yields a unit
Reynolds number of Re

ref
= 1.1869x107/m. The wall surface was treated as a no-slip,  adiabatic wall, using a turbulent

wall  matching  boundary  conditions [38].  The  Menter  Baseline  two-equation  turbulence  model  [40]  was  used  to
compute the Reynolds stresses and Reynolds heat flux (Pr

t
=0.9), and the turbulence model production term was based

on the magnitude of the vorticity. The inviscid fluxes were computed using the LDFSS scheme with the higher-order
cell-face states  reconstructed using the  LP-U-MUSCL, κ=1 /3 , approach with the face-averaged gradients limited
using the gradient limiter described by Eqs. [35-40] where the actual limiter function used was the vanAlbada function.
The viscous  fluxes were  computed using the  Nishikawa cell-face  gradient  method.  Convergence was  achieved by
“freezing” the gradient  limiter  after  1500 time steps to prevent  convergence stalling due to limiter  “ringing”.  The
governing equations were solved implicitly using the SGS defect correction scheme, with local time stepping and the
CFL number linearly varied from 0.1 to 100 over time steps 1 to 250 for a total of 5000 iterations. The strut geometry
was discretized to form a 3-D computational domain using the Pointwise® unstructured grid generator as shown in Fig.
19. The resulting grid consisted of a combination of quadrilaterals and triangles on the boundaries, as shown in Figs. 20
and 21. All boundary surfaces were extruded normal to the surface to form layers of hexahedral  and prismatic  cells.
These hexahedral and prismatic layers were then transitioned to tetrahedral cells via a layer of pryamidal cells to form a
3-D grid consisting of 484,579 hexahedral, 23,223 prismatic, 249,176 pyramidal and 484,579 tetrahedral cells for a total
of  2,050,581 cells. The boundary conditions,  as shown in Fig. 20  were: 1) reflection of all variables at the max. Y-
direction boundary cell faces (Freestream Boundary), 2) specification of all variables on the min. X-direction boundary
cell faces (Inflow Boundary), 3) 1st-order extrapolation of all variables at the max. X-direction boundary cell faces
(Outflow Boundary) and 4) adiabatic wall-matching on the min. Y-direction and strut surface wall boundary cell faces
(No-slip Adiabtic Wall Boundary). The computations were performed using parallel processing on 24 partitions. Figure
22 presents a more detailed view of the outflow boundary grid where a colliding front is pointed out. This detail results
from the convergent normals of the bottom wall and strut side wall boundaries. The grid quality at the outflow is not too
concerning. However, if one plots a constant X-direction slice upstream of the outflow boundary, as shown in Fig. 23,
the cells can be seen to be highly sewed and flattened. This area of the grid contains cells with included angles of leass
than 0.04 degrees and as such is considered a problematic grid and is why this grid was chosen as a test case for the F-
ANG+ scheme. In addition, the use of wall functions for this case, causes the F-ANG+ scheme to use the F-ANG+ fn
and the F-ANG-nn stencils. This is because wall function stencils do not include wall face values and on some grids can
result in stencils that are not well posed. Figure 24 presents a composite contour plot where the wall pressure contours
are plotted on the adiabatic wall faces and slices reveal the outflow boundary, strut midline XY plane and constant XZ
plane Mach contours showing the solution to be well behaved. Finally, the convergence history of the strut computation
is  presented  in  Fig.  25  where  the  residual  can  be  seen  to  have  converged  in  a  reasonably  well  behaved  manner
approximately six orders of magnitude from its largest value. 
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IV. Summary and Conclusions
The development of novel gradient construction approaches have been  pursued due to a near-term desire to

reduce, in terms of computational effort and storage, the cost of computing weighted least-squares gradients (WLSQ)
on general unstructured grids. We were further motivated by a long term need to improve the fidelity and robustness of
the cell centered, finite-volume, unstructured grid method on the highly skewed tetrahedral grids that can be produced
by current tetrahedral unstructured grid adaptation algorithms. In particular, a method for computing WLSQ gradients at
the grid nodes, and the related 2-D face-averaged nodal-gradient (F-ANG+fn) approach of Nishikawa and White was
extended to 3-D and a further augmented (F-ANG+nn)  approach was developed to allow for stencil expansion when
near  boundary stencils become difficult to assemble. This resulted in the development  of  a novel 3-D approach  (F-
ANG+) for computing WLSQ gradients at the nodes, averaging of those nodal gradients to the cell faces, and the use of
the averaged nodal gradients in constructing the inviscid and viscous fluxes in a 2nd-order accurate,  cell-centered,
finite-volume  unstructured  mixed-grid-based  solver. A quadratic  least  squares  approach  to  computing  the  WLSQ
gradient was described and a new approach to constructing the gradient limiters on the faces that produces a limiter that
is consistent with the LP-U-MUSCL scheme for all values of κ was also described. Finally, an improvement to the
pressure limiter of Gnoffo was described that constrains the limiters action to compressing flow. The accuracy of the F-
ANG+ scheme was explored via the  laminar hypersonic  flow of thermally-perfect  air  over  a  flat  plate.  This  was
accomplished by performing a 2-D structured grid resolution study using the VULCAN-CFD structured grid solver to
establish a “reference” grid-resolved wall heat transfer distribution. A 3-D grid resolution study using the F-ANG+
approach on a series of regular tetrahedral grids was performed and compared against the 2-D “reference” solution. The
conventional, 3-D, node-neighbor cell-centered gradient approach (nn-CCG) was also compared against this reference
solution and the F-ANG+ solution on one of the regular tetrahedral grids.  For this tetrahedral grid, the 3-D F-ANG+
nodal gradient approach was found to be the most accurate and to reduce the cost of computing the WLSQ gradients by
a factor of 8.9 compared to the 3-D nn-CCG approach. In addition, the sketch-to-solution grid adaptation approach was
used to explore the behavior of F-ANG+ on extremely skewed tetrahedral grids using the weighted linear least squares
scheme (WLLSQ) and the weighted quadratic least squares scheme (WQLSQ) to compute the gradients. Both schemes
were found to produce excellent results with the quadratic scheme results being slightly less oscillatory than the linear
scheme.  Turbulent  hypersonic  flow  over  a  backward  facing  step  was  used  to  demonstrate  the  behavior  of  the
compression constrained Gnoffo pressure limiter. Finally, turbulent hypersonic flow over a notional scramjet combustor
fuel injector strut was computed to demonstrate that the F-ANG+ scheme is stable in 3-D on problematic grids for
advection and diffusion on grids containing hexahedral, prismatic, pyramidal and tetrahedral cells.
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Figures

 Fig. 1. 2-D hybrid-grid control-volume interface between the triangular cell, k
L
, and the quadrilateral cell, k

R
. 

 Fig. 2., 2-D reconstruction of the L and R states at the hybrid cell face centroid,  f
c
, x, for the inviscid and viscous fluxes. 

Figure 3. Linearity preserving U-MUSCL reconstruction of the left and right states.

Fig. 4. The 2-D fn2-CCG WLSQ stencil, {lk},  for cell, k (blue shaded area), 
on representative triangular and quadrilateral grids.
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Fig. 5. The 2-D nn-CCG WLSQ stencil, {lk}, cell, k (blue shaded area),
on representative triangular and quadrilateral grids.

Fig. 6.The 2-D stencils {li}, for computing the WLSQ gradients at the nodes j=1, 2,… , N cell ( l )
nodes

for cell, k (blue shaded area), on representative triangular and quadrilateral grids.

Fig. 7 The 2-D stencils {li}, for computing the WLSQ gradients at the nodes, i
1-N

,

for control volume, k (blue shaded area), on representative triangular and quadrilateral grids.
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                        Fig. 8. Candidate stencil augmentations of a node-centered gradient on a grid of triangles.
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Fig. 9. Candidate stencil augmentations of a node-centered gradient on a grid of quadrilaterals.

Fig. 10. A comparison of the FAC-ANG face nodal gradient stencils with F-ANG+fn and 
F-ANG+nn face nodal gradient stencil on a hybrid grid of triangles and quadrilaterals.

Fig. 11. A comparison of cell MLP gradient limiter coefficient
construction using a cell-based and a face-based approach.
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Fig. 12. Mach 6, 2-D, laminar flat plate, 2-D 101x77 structured grid with every other grid line removed.

Fig. 13. Mach 6, 2-D, laminar flat plate, 2-D structured grid wall heat transfer grid resolution study.

Fig 14. Mach 6, 2-D, laminar flat plate, 3-D 51x39x3 node tetrahedral cell grid
 based on a 51x39 node 2-D structured grid.
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 b) Comparison of the nn-CCG, F-ANG and
 F-ANG+fn schemes using the 201x153x9 grid.

 c) A magnified view near the plate trailing edge comparing the nn-CCG,  
 F-ANG and F-ANG+fn  schemes using the 201x153x9 grid.

 a) Unstructured wall heat transfer grid             
resolution study Using the F-ANG+fn scheme.

Fig. 15. Mach 6.0, 2-D laminar flat plate comparison of heat transfer on structured and unstructured 
tetrahedral grids for solution using nn-CCG, F-ANG and FANG+fn WLLSQ schemes.

 Fig. 16. Mach 6.0, 2-D laminar flat plate comparison of heat transfer on structured and adapted 
unstructured tetrahedral grids for solution using the  FANG+fn approach  linear and quadratic 
WLSQ schemes.
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Leading Edge Deail Boundary Layer Detail

Figure 17. Mach 6 laminar flat plate refine adapted grid using the sketch-to-solution 
workflow after 29 grids using total enthalpy Hessian as the adaptation metric.

c) Detailed view of the adapted laminar boundary layer grid near the flat plate trailing edge.

b) Detailed view of the adapted laminar boundary layer grid near the flat plate leading edge.

a) Adapted laminar flat plate boundary layer grid.
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Without Gnoffo Pressure Limiter

With Original Gnoffo Pressure Limiter

With Gnoffo Pressure Limiter Modified
To Only Affect Compression

 Fig. 19. Mach contours for computations of a hypersonic flow over a 2-D backward facing step
without a pressure limiter, with a pressure limiter and with a compression only limiter.

 Fig. 18. Computational grid and boundary conditions for hypersonic flow
 over a 2-D backward facing step.
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 Fig. 21.  Strut leading edge detail of adiabatic wall surface grid constructed using hexes and triangles.

Fig. 20. Computational domain for computing hypersonic turbulent flow over a notional fuel injector strut.
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Colliding
Fronts

 Fig. 22.  Strut top and body adiabatic wall and outflow boundary 
details of surfaces grids constructed using hexes and triangles.

 Fig. 23. Colliding front detail of a grid constant X slice where cells have very small included angles. 
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Fig. 24. Wall static pressure contour lines and constant X, Y and Z slices 
of Mach No. flood and line contours.

Fig. 25. Convergence behavior of the notional hypersonic strut case using the F-ANG+ approach.
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