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Early work is presented for an unstructured grid adaptation workflow with VULCAN and
refine. Anisotropic simplex grids are iteratively adapted to match a Riemannian metric tensor
field describing desired mesh spacing. The Riemannian metric tensor field is obtained from
Hessians of CFD solution output scalar sensor fields; both Mach number and static temperature
sensor fields are explored. In addition, we describe a Newton-method-based solver recently
implemented in VULCAN utilizing Jacobian-Free-Newton-Krylov that can be used to increase
flow solver automation on early grids in the adadptation process. Hypersonic flow solutions
are presented on a high Reynolds number flat plate and wall heat flux is compared against a
highly resolved structured solution. Additionally, complex shock boundary-layer interaction
is explored in a high Mach number compression corner and complex 3D flow phenomena are
evaluated on the Boundary Layer Transition (BOLT) vehicle.

I. Nomenclature

V = cell volume
Q = solution vector of partial di�erential equations
R = nonlinear residual of discretized partial di�erential equations
" = finite-di�erence step size
n = iteration level
� = line search step size

II. Introduction
Computational Fluid Dynamics (CFD) codes are heavily used for both the analysis and design of supersonic and

hypersonic vehicles. CFD techniques utilizing structured grids have long been preferred over unstructured techniques for
high speed applications due to their higher accuracy, particularly in computing wall heat flux or skin friction. Calculations
with fixed unstructured meshes [1] and o�-body adaptation based on solution gradients [2] show unsmooth surface
heating profiles. However, generating structured grids can be time consuming, particularly in regions where the geometry
is complex, such as the flow path of a scramjet. And though structured-grid adaptation has been successfully used with
local and mostly one-dimensional grid morphing schemes, it can also be challenging to generate structured grids to
adequately match local flow characteristics. In cases with highly complex geometry or flow physics, a tetrahedral-based
unstructured discretization technique combined with robust grid adaptation is a desirable tool — so long as accuracy
is su�cient. Recent work with VULCAN, a finite-volume CFD solver focused on hypersonic applications, has been
focused on improving accuracy and robustness of the unstructured discretization to enable unstructured adaptation [3–5].
This improved tetrahedral unstructured discretization is combined with dramatic progress made in the last decade for
anisotropic solution-adaptive methods to resolve simulations with shocks and boundary layers [6], where a community
e�ort has verified these adaptation methods for subsonic and transonic flows. [7–9]. In particular, smooth skin friction
is shown in Ref. [9] which is relevant to other boundary normal derivatives like heating.

It has previously been demonstrated in Ref. [10] that deep nonlinear convergence may also be required to achieve
accurate wall heat flux in hypersonic problems. The defect-correction scheme in VULCAN can often reach deep levels
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of convergence on bespoke unstructured grids. However, when utilizing an automated adaptation-based workflow, the
VULCAN solver may be required to solve a sequence of tens of automatically generated grids to resolve the highly
nonlinear flow solution. These adapted grids have tight anisotropic spacing to achieve higher accuracy, but fine spacing
lowers dissipation and the anisotropy can increase sti�ness to create a challenging nonlinear problem. Therefore, a
robust and automated nonlinear solver strategy, such as Pseudotransient Continuation (PTC) based on Newton’s method,
is an attractive option.

The goal of this paper is twofold. First is to demonstrate recent development e�orts in adding a nonlinear solution
procedure to VULCAN, based on Newton’s-method, that increases robustness and automation. The increased robustness
and automation enables a semiautomatic adaptation workflow with VULCAN and refine [11] to obtain solutions on
unstructured simplex grids. The second goal is to explore the use of Mach number or static temperature sensor fields
to drive mesh adaptation for hypersonic problems. The multiscale metric controls estimated interpolation error in a
field. [12–14]. We demonstrate two sensor fields to see how they are related to heating prediction. The choice of sensor
field impacts the accuracy of the flow solutions, which is demonstrated by a comparison of wall-heating rates and grid
spacing.

III. Unstructured Mesh-Adaptation Methodology
The approach taken to utilize anisotropic mesh adaptation with VULCAN follows the overall strategy described in

Ref. [15]. The problem domain geometry is defined with the Engineering Sketch Pad (ESP) [16] that includes OpenCSM
[17] as a constructive solid modeler. Attributes [17], composed of name and value pairs, are carried throughout the
geometry build process to the various faces of geometry and used to specify the VULCAN boundary conditions. Once
the geometry of the problem domain is defined in OpenCSM, an initial surface triangulation is created by the Electronic
Geometry Aircraft Design System (EGADS) [18], where parallel execution is facilitated by EGADSlite [19]. At this
point, the problem domain is bounded by a water-tight surface mesh where each surface triangle is associated with
underlying geometric entities. Maintaining this association between the discrete mesh and the underlying geometric
representation is critical because during mesh adaptation the association is used by refine [11] to ensure the adapted
meshes represent the true geometric intent as the grid is adapted. The initial EGADS surface mesh is adapted based on
a geometric curvature and feature size [20] with an interpolated geometry constraint metric.

Once the surface triangulation is complete, the volumetric fluid domain is then filled with tetrahedra using TetGen
[21]. This initial Delaunay-based TetGen volume mesh does not satisfy the surface geometry constraint metric, so refine
adaptation is used to satisfy the geometry constraint metric on the surface and volume simultaneously. The mesh is now
as coarse as possible while satisfying the geometry constraint metric. An optional step can be performed to refine the
initial mesh based on an implied metric to a user-specified complexity (number of elements). At this point, the mesh is
ready to obtain an initial solution using VULCAN.

With the generation of the initial grid complete, the adaptation loop begins. The OpenCSM boundary attributes are
mapped onto the discrete mesh as well as to numerical boundary conditions implemented in VULCAN. The JFNK solver
within VULCAN is provided by Enigma [10], which is used to obtain a solution on the discrete mesh. A scalar sensor
field is extracted from the VULCAN solution (static temperature or Mach number). A Hessian of the sensor scalar field
is calculated and is used to construct a Riemannian metric tensor field. The Riemannian metric field specifies desired
anisotropic spacing to control the L2 norm of the estimated interpolation error of the scalar field [12–14]. This is a key
development over an earlier, Hessian-based element that controls estimated interpolation error in L1 norm because
using the Riemannian metric field provides control over smooth and unsmooth contributions to the error simultaneously.
The Riemannian metric field is scaled globally to specify a new mesh of a targeted size (mathematically defined as
the complexity of the metric [13]). The mesh adaptation package refine is used to generate a new mesh that closely
matches the spacing requested in the scaled Riemannian tensor field. By controlling for interpolation error, the output
Riemannian tensor field will often describe a spacing field calling for highly anisotropic elements. This is particularly
true inside boundary layers and at shocks. The newly-generated mesh can be adapted both in the interior of the mesh,
and along the surfaces with the surface meshes being adapted onto an underlying EGADS geometry representation and
thereby producing a mesh that conforms to the anisotropic nature of the tensor field.

Once a newly-adapted mesh is complete, the cell-centered solution state of VULCAN is averaged to the nodes of the
original mesh, and the nodal solution is linearly interpolated from the original mesh onto the nodes of the adapted mesh.
The interpolated solution field defined at nodes of the new mesh is averaged to obtain an initial solution at the cell
centers of the new mesh. This interpolated solution is used as the starting state for VULCAN when solving on the new
grid. Figure 1 shows the workflow that continues until accuracy requirements or resource limits (e.g., execution time or
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mesh size) are reached.

Metric Construction 
from Temperature 

Hessian

Vulcan Solution with 
JFNKInitial Mesh

Interpolate Solution 
onto Adapted Mesh

StopContinue?

Refine Adapts Mesh 
to Match Metric

Fig. 1 Adaptation workflow: An initial mesh is iteratively adapted to control interpolation error in the
temperature field.

For the results in this paper, the grid sizing in terms of complexity follows a fixed schedule. Each case begins with a
defined initial target complexity. Complexity as an integral measure of the metric and a sharp estimate of the cells in
the adapted mesh, see [? ]. The complexity is doubled from the first to the second adaptation cycle and every fifth
adaptation cycle. Each series of five grids are adapted to the same target complexity, although the number of elements
may vary between grids in the same series by a few percent. This paper will report mesh sizes in terms of the number of
control volumes (triangles in 2D, or tetrahedra in 3D) as opposed to the number of nodes, or the grid complexity, even
though it is the grid complexity that is specified directly and not the number of control volumes.

IV. Jacobian-Free Newton-Krylov in VULCAN
A strong nonlinear solver is highly desirable when using the anisotropic mesh-adaptation workflow described in

section III. The following section describes the addition of a Jacobian-Free Newton-Krylov (JFNK) based nonlinear
solving technique to VULCAN. Deep nonlinear convergence for each grid is a long-term goal, and JFNK provides a tool
toward achieving that goal. For the work presented in this paper, the JFNK technique is primarily used during coarse
and medium-sized adapted grids where Newton convergence can be obtained. However, the two main reasons for using
JFNK over the typical defect-correction-based nonlinear solver used in VULCAN are automation and robustness. It
has been the author’s experience that the simplex anisotropic meshes are more challenging to achieve deep nonlinear
convergence than with traditional mixed-element meshes obtained via commercial grid generators. The nondivergence
behavior of Krylov schemes combined with an automated CFL controller significantly reduce the human-in-the-loop
e�ort for adapted grids. When using the Sketch-to-Solution workflow each case requires solving tens of adapted grids
per case as whereas an engineer may only use three (coarse, medium, fine) or fewer grids in a fixed-grid workflow.
Automation is key to successfully leveraging adapted grids.

The strong nonlinear solver used within VULCAN for this work employs the Enigma plugin framework [10]
utilizing a PETSc [22] backend. A C++ wrapper to VULCAN was developed to implement the Enigma::EquationSet
abstraction. Enigma was utilized to solve the minimization process:

Q 3 R(Q) = 0 (1)

R is the nonlinear residual of the discretized PDEs within VULCAN and Q is conserved quantities of mass, momentum,
and energy. The solution is updated iteratively as

@R
@Q
�Q = �R(Qn) (2)

�Q = Qn+1 � Qn (3)

Where the Jacobian of the PDE, @R
@Q , is updated via the same solution as that used to evaluate R. Because Eq. 2 requires

the solution of a (potentially sti�) linear system at each update, a preconditioned Krylov subspace method is used at
each nonlinear step. Krylov subspace methods only require that the matrix-vector product @R

@Q�Q be formed for each
search direction in the Krylov subspace during the linear solve, which can be approximated via a Frechet derivative [? ]

@R
@Q
�Q =

R(Q + "�Q) � R(Q)
"

(4)
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This approximation is referred to as the Jacobian-Free Newton-Krylov (JFNK) method. At each nonlinear step,
VULCAN calculates the nonlinear residual R and computes first approximations of the Jacobian @R

@Q . The nonlinear
residual is used directly by Enigma, and the approximate Jacobian is used by the block successive overrelaxation
Gauss-Seidel preconditioner within PETSc. It should be noted that JFNK does require at least one more residual
evaluation per iteration than a method that explicitly forms the Jacobian, and is not necessarily more cost e�ective than
explicitly forming the Jacobian. The full second-order VULCAN stencil may include up to one hundred o�-diagonal
entries, and a complex chemically-reacting simulation may have Jacobian blocks as large as 50⇥50. The major benefit
of JFNK is that the full and exact Jacobian does not need to be formed explicitly. This combination means that storing
the full Jacobian matrix may require a prohibitively large amount of memory. Furthermore, it is not practical to form
exact Jacobians for complex problems. The existing and proven Jacobians within VULCAN are leveraged by the
JFNK preconditioner to accelerate solving the linear subproblem and to reduce the number of Krylov search directions
ultimately used.

A. Globalization of Newton’s Method with Pseudotransient Continuation
A drawback of Newton’s method is that convergence to a root of the PDE is not guaranteed. The initial solution state

may be far away from the root of the PDE, and a globalization technique is often required to avoid the algorithm stalling
or diverging. The globalization strategy used in this work is PTC with the time step as the continuation parameter. To
utilize PTC, the backward Euler time integration can be used to rewrite Eq. 2 introducing a time-based continuation
term: ✓

Vi

�ti
I +
@R
@Q

◆
�Q = �R(Qn) (5)

where Vi is the volume of cell i and �ti is the timestep used in cell i. Alternatively, a fixed time step can be used across
all cells (simply referred to as �t). The timestep in Eq. 5 is dynamically controlled during convergence, such that �t
is small during the early stages of convergence and is adjusted to a large value near convergence to recover quadratic
Newton convergence. The time step is controlled by adjusting the CFL number and the strategy used to adjust the CFL
number is described later in this section.

The addition of the continuation parameter must be included in the residual used in Equation 4 so that the impact of
the globalization parameter is included in the automatically computed Frechet Jacobians. The new residual operator
used by the Frechet technique is

R̃(Q̃) = R(Q̃) + (Q̃ � Qn)�t
V

(6)

Q̃ is the perturbation to the solution from the Frechet derivative:

Q̃ = Qn + ✏�Q. (7)

The final step of the nonlinear solver is a line-search. Solving Eq. 5 yields a potential solution update �Q. A line
search may improve convergence and robustness by finding a solution update scaling factor, �, from

Qn+1 = Qn + ��Q (8)

such that R̃(Qn+1) is minimized.
A good CFL adjustment strategy is key to balancing between having a robust solver, and a fast one. [23? –25] The

strategy used for this work solves for a proposed solution update �Q and scaling factor � and then categorizes the
previous step into three broad categories: a good update, an acceptable update, and a refused update. A step is labeled a
good update so long as:

• the Krylov linear solver was able to converge the linear problem to three orders of relative magnitude
• � � 0.1
• The nonlinear residual was reduced | |R(Qn+1)| |2 < | |R(Qn)| |2)

A step is labeled acceptable if
• the Krylov based linear solver was able to converge the linear problem to three orders of relative magnitude
• � � 0.1
• The nonlinear residual did not grow too rapidly | |R(Qn+1)| |2 < 2| |R(Qn)| |2)

Finally, a step is refused if the step is not categorized as either good or acceptable.
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If a step is categorized as refused, then the solution is reset to the previous solution and the CFL is reduced by a
factor of 20. If the step is categorized as good, then the CFL is increased by a scaling factor, typically 1.5. If the step
was categorized as acceptable, the CFL is not changed at this stage.

Once the new CFL is set from the categorization stage there are a few instances where the new CFL is further
overwritten. If at any time the new CFL would go out of user specified bounds, it is reset to be within this range. The
range used for the cases in this paper were very forgiving with a minimum value of 10�3 and a maximum of 108. If the
step was categorized as acceptable, but the number of Krylov search vectors was above a target of 50, then the CFL
is reduced by 80% for the next step. Coupling the CFL to the e�ort required in the linear solver is done to limit the
quadratically increasing cost of the Krylov linear solver in regions where full Newton convergence is not expected. If
the solver achieves 20 good updates in a row then this rule is disabled. Finally, an optional augmentation is to limit the
maximum CFL for the next 20 nonlinear iterations after a refused step. The new, temporary, maximum CFL is set to
80% of the CFL that was used during the failed step.

Even with tuning, the CFL to manage the cost of the linear problem, per nonlinear iteration; the overall cost of the
JFNK scheme is much greater than that of VULCAN’s existing defect-correction scheme. For each nonlinear iteration,
the preconditioner is computed by calculating VULCAN’s first-order Jacobians, and then the residual is computed
many times. One residual evaluation is required for every Krylov search direction, plus every step of the line search
requires an additional residual evaluation. Furthermore, each residual evaluation must be an accurate representation of
R(Q) including fully converging any nonlinear equations that are encountered calculating thermodynamic or transport
properties or when calculating complex boundary conditions. With the existing defect-correction solver these quantities
can be undersolved to further decrease the per-iteration cost. However, for JFNK, if the residual is not accurate with
respect to the current solution state then the Newton step will be approximate and further degrade the convergence rate.
Because of these increased costs, the JFNK scheme is cost e�ective only if it can solve the nonlinear problem using
significantly fewer nonlinear iterations. On coarse grids, the JFNK scheme often is able to obtain quadratic, or near
quadratic convergence. As the grid is refined, the JFNK convergence degrades to linear (or worse) convergence. The
additional cost of JFNK is not necessarily a significant drawback on coarse to medium grids since the overall cost to
solution is relatively small anyway. And the automated CFL control, as well as the ability to reset the solution to a
previous "safe" solution state greatly reduces the human e�ort involved in the early adaptation cycles.

V. Results
Automated simplex mesh adaptation has been used extensively for subsonic and transonic applications where the

sensor of interest is often Mach number. However, we are interested in leveraging this technology for hypersonic
applications and, in particular, the prediction of wall heating. The first two test cases that follow were selected to closely
evaluate wall heating rates on simplex adapted grids for well understood 2D laminar flows. The first is a high unit
Reynolds number (26.4 million) flat plate at Mach 6 and the second is a lower unit Reynolds number (0.104) at a high
15.1 Mach number. The final case presented is a 3D configuration with a complex smooth geometry at Mach 6 with a
unit Reynolds number of 6.69 million.

A. 2D Reynolds Number 26.4M Flat Plate at Mach 6
The first case presented is a 2D flat plate at Mach 6 with a Reynolds number of 26.4 million. A slip wall boundary

condition is between x = -0.34 and x =0.0 and a 335.83 K isothermal wall starts at x = 0.0 to the extrapolation outflow
condition at x = 2.0. The inflow static temperature was fixed at 63.01 K. VULCAN was used to obtain solutions using a
second-order upwind-biased Fromme scheme and a multidimensional limiting process based on the Venkatakrishnan
smooth limiter [3]. The limiter was not frozen at any point. The viscous gradients were obtained using the F-ANG
approach described in Ref. [3].

Two di�erent adaptation trajectories were run starting from the same initial grid with each grid adapted to control
L2 interpolation error in a specific sensor field of either Mach or static temperature. The cell-based sensor fields were
averaged to the nodes with a volume-weighted average of the cells surrounding each node in the grid. Then, the Hessian
was computed at nodes. The adaptation code refine was used to perform adaptation using the multiscale metric technique
based on each of the sensor fields. Each series was run for 26 adaptation cycles resulting in grids with 170k triangles.
Figure 2 shows a zoomed-in view near the leading edge of the flat plate for the final adapted meshes where anisotropic
elements were formed along the diagonal discontinuity that begins at the flat plate leading edge. Figure 2 has been
stretched by a factor of 10 in the wall-normal direction. The final Mach-adapted grid has more grid resolution in the
streamwise direction, whereas the temperature-adapted grid has more grid resolution in the wall-normal direction.
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(a) Final adapted mesh with Mach sensor.

(b) Final adapted mesh with static temperature sensor.

Fig. 2 The final adpated grids for (a) Mach- and (b) static temperature-based adaptation. The coordinate
direction normal to the surface has been scaled by a factor of 10. The temperature-based adapted grid has
higher aspect ratio cells near the boundary layer than that of the Mach adapted grid.

Figure 3 shows the convergence history of the first three, middle three and final three grids. On the initial coarse
grids, full Newton convergence is obtained and near Newton convergence is observed on the medium grids. However,
the convergence rate degrades as the grids are refined, showing a mix of quadratic and linear convergence. The CFL
controller rule requiring the CFL to stay under previously achieved maximum CFL was not enforced for these cases,
since deep convergence was obtained without requiring it, and the number of nonlinear iterations required was small.
However, the removal of the rule produces jagged convergence histories.

Figure 4 shows the wall heat flux and y+ computed on each of the final grids obtained by adapting to control Mach
number or static temperature. Both unstructured adapted grids are compared against a highly refined, 1.2 million cell,
structured-grid solution obtained from VULCAN. From Figure 2, the Mach number adapted grid placed more grid points
along the flat plate. However, it can be seen from Figures 4 (c) and (d) that the grids obtained from static-temperature
adaptation has an overall smaller cell height at the wall. The wall heat flux obtained on the static temperature-adapted
grid is significantly more accurate, and smoother, compared to the solution obtained from Mach number adaptation.
Furthermore, the heat flux obtained from the static-temperature adapted grid compares favorably to the structured grid
solution.
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(a) Grid 1. (b) Grid 2. (c) Grid 3.

(d) Grid 13. (e) Grid 14. (f) Grid 15.

(g) Grid 24. (h) Grid 25. (i) Grid 26.

Fig. 3 Mach 6 flat plate convergence history for the first three, middle three, and final three grids in the
adaptation sequence using the JFNK nonlinear solver.
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(a) Mach number adapted Q.

x
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(b) Static temperature adapted Q.

(c) Mach number adapted y+. (d) Static temperature adapted y+.

Fig. 4 Results for laminar flow over a flat plate at M1 = 6.0 and Re1 = 26.4 ⇥ 106 on an adaptive triangular
grid adapted based on the Mach number Hessian or the static temperature Hessian. The wall heat flux, Q,
and y+ are plotted at wall face centers. A highly refined structured-grid solution is shown for wall heat flux
comparison.
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B. Mach 14.1 Compression Corner
The next test case is a 15� laminar compression corner with M1 = 14.1 and Re1 = 1.04 ⇥ 105 and an inflow static

temperature of 72.2 K. The 297.0K isothermal wall starts at x = 0.0 and the corner is at x = 1.143. A fixed inflow
boundary condition was placed at x = -0.255 and an extrapolation condition was used at x = 2.42. An overview of the
test case is shown in Figure 5, with the Mach field and static pressure contours from the final grid obtained from both
sensors.

(a) Mach adapted fine grid.

(b) Static temperature adapted fine grid.

Fig. 5 Mach field with contour lines of static pressure on the fine grid from Mach number- and static
temperature-based adaptation trajectories.

Figure 6 shows the very coarse (21k) triangle grids obtained at iteration 15 for both the Mach number and static
temperature sensors. Using the temperature field to drive adaptation leads to more grid being allocated to the boundary
layer and the grid is still highly refined at the transmitted shock. The contact discontinuity and the leading edge shocks
are not as refined using the temperature-only error estimate. Notice that upon further adaptation many strong and subtle
features of the Type VI shock are evident in the grid.

Figure 5 shows Mach number with static pressure contours at logarithmically spaced intervals comparing solutions
obtained on the fine grid from the Mach number and static temperature trajectories. The grid obtained via Mach number
adaptation in Figure 5a shows smoother static pressure contours upstream of the corner compared to the solution
obtained via static temperature adaptation shown in Figure 5b.

Wall heat flux from coarse (42k triangles), medium (84k triangles), and fine (168k triangles) grids is shown in
Figure 7 for both Mach number-and static temperature-based adaptation trajectories. Both Mach number- and static
temperature-based trajectories show smoother wall heating as the grid is refined. However, static temperature-based
adaptation yields much smoother wall heating for the same grid size when compared to Mach number-based adaptation.
Both trajectories also show a drop in wall heating at the exit boundary condition that diminishes on finer grids. Computed
y+ values are shown in Figure 8. Both Mach number and static temperature trajectories show a y+ cell height less
than 1.0 for all grids, and under 0.5 on the fine grids with the static temperature-based adaption grids having a smaller
y+ than the Mach number-based adaption grids. Finally, Figure 9 shows several fields derived from the VULCAN
simulation on the final adapted grid using the static temperature-based adaptation.
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(a) 21k triangle grid with Mach-only error estimate.

(b) 21k triangle grid with temperature-only error estimate.

Fig. 6 Grids obtained for each sensor field at iteration 15 of the adaptation cycle. Each grid has approximately
21k triangles.

(a) Heat flux on Mach number adapted grid. (b) heat flux on static temperature adapted grid.

Fig. 7 Wall heat flux on coarse (42k triangles), medium (84k triangles), and fine (168k triangles) for from Mach
number- and static temperature-based adaptation trajectories.
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(a) y+ on Mach number adapted grid. (b) y+ on static temperature adapted grid.

Fig. 8 Computed y+ on coarse, medium, and fine grids for Mach number and static temperature trajectories.

(a) Mach Number. (b) Static Temperature.

(c) Static Pressure. (d) Entropy.

(e) X-Velocity. (f) Y-Velocity.

Fig. 9 Results for a laminar flow over a 15-degree compression corner at M1 = 14.1 and Re1 = 1.04 million
on an adaptive triangular grid using the static temperature sensor.
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C. BOLT at Mach 6 and ↵ 5, Re 6.69 Million
The final test case is a 3D case based on the BOLT geometry [26]. The test case was selected to begin exploration of

using 3D geometries with VULCAN and anisotropic tetrahedral adaptation. An overview image of the case can be seen
in Figure 10 showing the Mach field as well as the mesh on the vehicle, symmetry, and outflow surfaces. The grid was
generated for a half-span domain and only the forebody flow is simulated at Mach 6 with an angle of attack of 5 degrees
and a Reynolds number of 6.69 million and an inflow static temperature of 51.6 K. The vehicle surface was simulated
using an isothermal viscous wall boundary condition with a temperature of 297.0 K. A fixed inflow condition was used
and the exit plane was simulated with an extrapolation boundary condition.

Fig. 10 Vehicle surface, symmetry plane, and outflow plane on the final adapted grid.

Unlike the previous cases, which were separately adapted to both Mach number and static temperature for comparison,
this case was only adapted based on static temperature. The final grid, obtained after 55 adaptation cycles and 24 million
tetrahedra, is shown in Figure 10. A closeup comparison of the blunt-body shock from the initial grid to the final grid is
shown in Figure 11. A strong bow shock forms o� the nose of the vehicle and is maintained to the exit plane. Several
vortices form at the nose of the vehicle and are captured via adaptation as they propagate downstream.

This case was run using the JFNK solver for the first 40 adaptation cycles. Early grids demonstrated fast nonlinear
convergence that again degraded as the mesh was refined. By adaptation cycle 40, it was clear that the JFNK solver
would not be able to make substantial progress without resorting to a very large number of nonlinear iterations and the
nonlinear scheme was switched back to Vulcan’s existing defect correction based solver starting on adaptation cycle 41.

Figure 12 shows false color plots based on quantities of interest on the surface and outflow plane of the final
adapted grid along with the grid on those surfaces. The grid was adapted to only control interpolation error in the static
temperature field and we see that the final grid is also highly refined where the solution is changing rapidly for entropy,
total enthalpy, and Mach number. However, regions of high gradient in the static pressure field are not as well captured
by mesh refinement. This result is consistent with the previous compression corner case. Figure 13 shows the predicted
heat flux on the final adapted grid along with the computed y+ value for the first cell height at the vehicle surface.
Despite 55 adaptation cycles and using the static temperature based sensor field the y+ at the nose of the vehicle is well
above 1.0 and the heat flux along the curved fin tips is not smooth.

VI. Summary and Future Work
This paper has outlined recent work towards an automated unstructured mesh adaptation workflow with VULCAN for

hypersonic applications. VULCAN has been integrated with a Jacobian-Free Newton-Krylov nonlinear solver package
previously developed at the NASA Langley Research Center [10]. Two-dimensional calorically perfect laminar-flow
test problems were presented for a high Reynolds number 2D viscous flat plate and a 2D compression corner at high
Mach number. Anisotropic mesh adaptation was performed via refine to obtain anisotropic simplex meshes adapted to
control the L2 of interpolation error in two sensor fields of Mach number and static temperature. Wall heating rates
were compared for the high Reynolds number flat plate and the high Mach number compression ramp. In both instances
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(a) Initial grid.

(b) Final grid.

Fig. 11 The initial 71 thousand tetrahedral grid and the final 24 million tetrahedral grid after 55 adaptation
cycles.
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(a) Entropy (b) Mach Number

(c) Static Pressure (d) Total Enthalpy

Fig. 12 Results for a laminar flow over the BOLT configuration at M1 = 6 and Re1 = 6.69 million on an
adaptive tetrahedral grid.

(a) Heat flux. (b) y+.

Fig. 13 The computed wall heat flux and y+ values on the final BOLT grid.
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the grids obtained using static temperature as the sensor field produced significantly smoother heating rates compared to
the grids obtained via the Mach number sensor. Static pressure contours from the compression ramp case showed that
grids obtained via the Mach number sensor were better suited to capture static pressure than grids adapted based on
static temperature. A comparison of y+ values on grids obtained from both sensors showed that for these cases the static
temperature sensor produced overall smaller values of y+ for the same sized grid.

Finally, a three-dimensional calorically perfect laminar flow test case was presented based on the BOLT configuration.
Based on the results from the 2D test cases only the static temperature sensor was used for the BOLT case. Qualitative
inspection of quantities of entropy, Mach number, static pressure, and total enthalpy were shown, demonstrating that
regions of high variation in static pressure is not captured in grids adapted to the static temperature sensor. Finally,
preliminary heat flux quantities on the BOLT configuration were shown.

This paper represents recent progress in ongoing work in many areas. The newly added JFNK nonlinear solver
in VULCAN enables automated solution process during coarse adaptation cycles. These early grids are generated
and solved quickly using an MPI-based compute cluster, often requiring only a few minutes for each grid. On more
refined grids, the nonlinear convergence rate degrades even while using the accurate linearizations o�ered by the
JFNK approach. Deep iterative convergence was not routinely achieved for the highly-adapted grids. There may be a
number of obstacles in routinely, and automatically, achieving deep iterative convergence. One identified obstacle is the
reconstruction limiter failing to converge, even while using the smoothly varying slope limiter of Venkatakrishnan [27],
without resorting to freezing the limiter. A robust technique for identifying when to freeze the limiter has so far remained
elusive, and the strategy of freezing the limiter is not overall desirable because a frozen limiter can allow non-physical
undershoots and overshoots. Michalak and Ollivier-Gooch have identified circumstances where the Venkatakrishnan
limiter is not su�ciently smooth for unstructured grids and have proposed an improvement [28]. Work is ongoing for
both the nonlinear solution procedure as well as the numerical discretization with the goal of improving robustness and
accuracy on complex grid systems.

The choice of adaptation sensor has been demonstrated to have a meaningful impact on heat-flux quantities. Yet,
while static temperature appears to be an improvement over the more typical Mach number sensor for the cases presented,
it has a few drawbacks. First, all the cases presented were solved using isothermal boundary conditions where the
surface temperature was greater than the fluid static temperature. A future study is planned using both isothermal walls
colder than the fluid static temperature as well as adiabatic boundaries. Additionally, the static temperature sensor was
shown to underperform the Mach number sensor at capturing the static pressure field. Future adaptation strategies with
VULCAN may be based on multiple sensor fields simultaneously through the intersection of multiple metric tensor
fields [29].
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