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A 2-D nodal weighted least-squares gradient method and a related face-averaged nodal gradient
approach  that  were  developed  for  use  with  triangular  grids  are  extended  to  3-D  for  use  with
tetrahedral grids. In addition, a method, developed in 2-D, to stabilize the iterative convergence of
these methods on quadrilateral cells is described and extended to 3-D and remedies are investigated to
determine  the  nodal  gradient  averaging  approach  most  suitable  for  use  with  grids  made  up  of
hexahedral,  prismatic,  pyramidal and tetrahedral cells.  Moreover, due to an interest in hypersonic
flow, a robust multidimensional gradient limiter procedure that is consistent with the stencil used to
construct the nodal gradients is described. Finally, we demonstrate that the resulting 3-D methods are
sufficiently robust for use in scramjet computations through the solution of  three canonical turbulent
hypersonic flow problems as well as a physically realistic 3-D scramjet inlet geometry.

I. Introduction
We are motivated to seek improved gradient computations by near term and long term code development

goals.  Our near  term goals  include the desire to reduce,  in terms of  computational  effort  and storage,  the cost  of
computing gradients, and to improve the fidelity and robustness of the VULCAN-CFD code on the most common types
of grid cell topologies produced by Commercial Off The Shelf (COTS) grid generation codes. Our long term goals
include a need to improve the fidelity and robustness of the 2nd-order  cell-centered control volume approach used in
VULCAN-CFD  on  tetrahedral  grids.  This  long  term  goal  is  motivated  by  the  recognition  that  unstructured  grid
adaptation, primarily on tetrahedral grids, has the potential to be a powerful tool in the control of discretization error in
Computational Fluid Dynamics (CFD) [1]. As discussed in Ref. [1] the current state-of-the-art of unstructured grid
adaptation methods on tetrahedral grids can lead to grids that have highly skewed  high aspect ratio cells that can make
the computation of gradients challenging thereby requiring that special attention be paid to the numerics for these types
of grids. 

This  paper  is  a  companion  to  the  AIAA SciTech  2020  paper  “Face-  and  Cell-Averaged  Nodal-Gradient
Approach  to  Cell-Centered  Finite-Volume Method on  Mixed Grids”  [2],  in  which  a  2-D nodal-gradient  or  node-
centered  gradient  approach  to  computing  weighted  least  squares  (WLSQ)  gradients  on  mixed  element  grids  is
developed and described. In turn,  Ref. [2] describes the 2-D mixed element extension of a triangular element face-
averaged  node-centered  gradient  approach  proposed  and  described  in  Ref.  [3].  The  novel  node-centered  gradient
approach in  Ref.  [3]  was shown to have  several  advantages over conventional cell-centered gradient/cell-average
gradient methods on triangles. These advantages were; 1) it requires less storage for least-squares gradient coefficients
and gradient computations, 2) it reduces the amount of interpartition communication with respect to gradients, and 3) it
reduces the size of the residual stencil. In Ref. [2] the face-averaged nodal-gradient (F-ANG) method was shown to be
unstable for quadrilateral elements and an averaging of the cells nodal gradients was proposed as a remedy. In addition,
a hybrid face and cell averaging of nodal gradients for 2-D mixed element grids containing both quadrilateral and
triangular elements was developed. In the current work, the objective is threefold; 1) to extend the 2-D  face and cell-
averaged nodal-gradient approach (FAC-ANG) of Ref. [2] to 3-D for the general case of grids containing a mixture of
hexahedral, pyramidal, prismatic and tetrahedral elements, 2) to determine if the advantages found in 2-D [2,3] still
exist in 3-D when utilizing a parallel computing paradigm and 3) to demonstrate that the resulting method can, through
the proper construction of the gradient limiter, be robust enough for use in computing high speed flows. Objective 1)
will be accomplished by building on the previous work described in [5,6,7] and describing how the resulting 3-D FAC-
ANG, approach and an alternative form, the face or cell-averaged nodal gradient (FOC-ANG) approach differ from the
conventional face  neighbors  of  face-neighbors  cell-centered  gradient  (FN2-CCG) and  node-neighbor  cell-centered
gradient (NN-CCG) approaches.  Objectives 2) and 3) will be met by implementing the  FAC-ANG and  FOC-ANG
approaches in the VULCAN-CFD [4-7] unstructured, cell-centered, finite-volume solver. Objective 3) will be met by
developing a  multidimensional gradient limiter procedure  that  is consistent with  the stencil that is  used  to construct
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the  weighted  least-squares  gradients  at  the  nodes  as  well  as  the inviscid  residual  stencil.  Finally,  the  relative
behavior  of  the  3-D  averaged  nodal  gradient  approaches  with  respect  to  the  cell-centered gradient  approach  is
demonstrated through the computation of canonical hypersonic flows and the relative robustness of the approach is
investigated through the computation of thermally-perfect hypersonic turbulent flow through a physically realistic 3-D
scramjet component geometry. 

II. Methodology

 A. Role, Importance and Construction of the Gradient.
Solution gradients are perhaps the most important and one of the more difficult quantities  to obtain  accurately

and  robustly on irregular, unstructured  grids.  The solution gradients are required to accomplish three things when
computing  the residual  of  the  discrete equations for  each  time  step/cycle  of  the  solution  process: 1) to perform
the  higher-order  reconstruction  when  computing  the  inviscid  fluxes,  2)  to  compute  the  cell-face  gradient  when
computing the viscous fluxes, and 3) to compute the source terms for the turbulence modeling transport equations.
Moreover, there is evidence in the literature that a different definition of the cell-average gradient may be required to
compute each of these quantities [8]. 

While no single gradient method has been found to be accurate for all arbitrary polygons, with some caveats
[9], the weighted linear least-squares method has proven to be the preferred method [10,11] for node-centered and cell-
centered 2nd-order finite-volume schemes. Therefore, based on the results in the literature [8-12], the weighted least-
squares method was chosen in [4] as the best approach for implementation in the VULCAN-CFD unstructured grid
solver. The WLSQ gradient method is based on a polynomial fit over a set of nearby data. For 2nd-order finite-volume
schemes, the gradients need to be at least 1st-order accurate on general unstructured grids; and thus, it is sufficient to fit
a linear polynomial. For a 2nd-order cell-centered finite-volume scheme, the authors are aware of at least three distinct
ways to compute the gradient. These are to 1) compute the cell-centered gradient (CCG) directly using a cell-centered
WLSQ method [5-11], 2) compute the gradients directly at the nodes, aka the nodal gradients (NG), using a node-
centered WLSQ method [13-15] and then utilize some form of NG averaging to compute the averaged nodal gradients
(ANG) at the cell centroid and/or the cell face centroids or 3) interpolate the cell-average solution to the nodes using a
clipped pseudo-Laplacian interpolation and then compute the cell average gradient using Green-Gauss [16]. Of the three
methods, we have chosen to concentrate our efforts on CCG and NG WLSQ gradient methods due to the need for
clipping in the method of Ref. [16].

When  faced  with  the  need  to  construct  gradients  on  unstructured  hybrid  grids  the  methodology used  to
construct the fluxes at the faces of the control volume directly influence how one chooses to construct the gradients.
Therefore, a review of the inviscid and viscous flux construction for a 2-D hybrid grid cell face, shown in red in Fig. 1
follows. 

 Fig. 1 2-D hybrid grid control volume interface between the triangular cell, k
L
, and the quadrilateral cell, k

R
. 

B. Role of the Gradient in Inviscid Flux Construction

If the inviscid fluxes are computed using an upwind flux scheme, a reconstruction based 2nd-order finite-
volume cell-centered scheme that utilizes an approximate Riemann solver such as the LDFSS [17] or HLLC schemes
[18], requires that the inviscid flux reconstruction variables, q

i
, be reconstructed at the left (L) and right (R) sides of the

cell face midpoint,  X,  as shown in Fig. 2-a. The inviscid flux reconstruction variables are the cell average variables
defined as

                                          qi = (
ρ 1
ρ ,… ,

ρ ncs
ρ , ρ , u , v , w ,P ,k ,ω )  for thermal equilibrium, or,

                                          qi = (
ρ 1
ρ ,… ,

ρ ncs
ρ , ρ , u , v ,w ,T ve , P , k ,ω ) for thermal nonequilibrium,

where
ρ 1
ρ ,…,

ρ ncs
ρ ,ρ ,u ,v ,w ,T ve ,P , k ,ω are the chemical species mass fractions, from 1 to the number of chemical

species,  static  density,  Cartesian  velocity components,  vibrational/electronic  Temperature,  static  pressure,  turbulent
kinetic energy, and specific  turbulent dissipation rate, respectively. 
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 Fig. 2 2-D reconstruction of the L and R states at the hybrid cell face,  f, centroid, x, for the inviscid and viscous fluxes. 

A 1st-order accurate scheme results when the cell-average values, q i k , of  the cell to the left, k
L
, and the cell to

the right,  k
R
, of the cell face are used. A 2nd-order accurate scheme results when the  L and  R primitive variables are

reconstructed to the cell face midpoint with an extrapolation or interpolation method based on the left and right cell-
average primitive variables and gradients, qi k L

, qik R
, and ∇ qi

L , ∇ qi
R ,  respectively, as given by

                                                                   qi f
L = qi kL

+ ∇qi
L ⋅ r⃗L f ,                                                                         (1)

                                                                  qi f
R = qi kR

+ ∇qi
R ⋅ ⃗r R f ,                                                                         (2)

where ⃗r L f and ⃗r R f are  defined  in  Fig.  2-b.  In  addition  to  the  scheme  above,  which  is  an  unstructured-grid
interpretation of Fromm's scheme [19], the higher-order variable extrapolation (or U-MUSCL) reconstruction scheme
[20] can also be used to control the dissipation of the scheme further. The U-MUSCL scheme can be written as

                                              qi f
L = qi kL

+ χ
2
(qi kR
−qi k L

) + (1− χ ) (∇qi
L ⋅ r⃗L f )                                                          (3)

                                             qi f
R = qi kR

+ χ
2
(qi k L
−qi kR

) + (1− χ )(∇qi
R ⋅ ⃗r R f )                                                          (4)

where χ is used to control the behavior and the 1-D order of accuracy of the scheme when the flow is smooth.
1. χ =    0,  gives Fromm's scheme,
2. χ =   -1,  gives a 2nd-order fully upwind MUSCL-type scheme,
3. χ = 1/3,  gives a 3rd-order upwind biased MUSCL-type scheme.

C. Role of the Gradient in Viscous Flux Construction.
The computation of the viscous flux requires that the cell-face average viscous primitive variable, q v.f , and

the cell-face average gradient of the viscous  primitive variables, ∇qv.f , be computed, where the viscous primitive
variables are, 

  qv.f = (
ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ ,u , v ,w , T , k ,ω )  for thermal equilibrium, or,  

                                     qv.f = (
ρ 1
ρ ,… ,

ρ ncs
ρ ,ρ ,u , v ,w , T ve ,T tr , k ,ω ) for thermal nonequilibrium,            

with T, Tve and Ttr being the static, vibrational/electronic and translational/rotational temperatures, respectively. We have
found that the construction of q v f , should be consistent with the method used to compute the cell face gradient of the
primitive variable, therefore, we begin by describing the methods that can be used to construct the cell face gradient.
Hasselbacher [21] observed that computing ∇qv f as a simple average of the left and right face gradients, i.e.,

                                                                             ∇ qv f =
(∇qv

L+∇ qv
R)

2
,                                                                       (5)

leads to odd-even decoupling necessitating the introduction of face-derivative augmentation. Hasselbacher suggested
two methods to accomplish this augmentation:  aka the edge-normal  (EN)  and face-tangent  (FT)  cell-face gradient
augmentation methods. The edge-normal and face-tangent augmented cell-face gradient methods were studied in Refs.
[4,8,22], where the face-tangent method was found to be preferable to the edge-normal method. Moreover, in Ref. [8],
the observation was made that, in many cases, a converged solution could only be obtained when the face-tangent
augmented face-gradient method was used. Therefore, since the edge-normal augmented cell-face gradient method does

3

a) Reconstruction to the cell face centroid b) Reconstruction Vectors
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not result in a robust method on skewed grids it is not considered further.  In  a cell-centered context, we define the cell-
face viscous primitive  variable and  face-tangent  augmented cell-face gradient, ̂∇ qv f

FT , and q v f , respectively as

           q v.f =
(q v kL
+qv kR

)
2

and ̂∇ qv f
FT = ∇qv f − [(∇qv f ⋅ ̂eLR) −

(qv k R
− qv kL

)
∣ e⃗ LR∣

](
̂n f

̂n f ⋅ ̂eLR

) ,                (6)

where q v k L
and q v k R

are the left and right cell viscous primitive variables, ̂n f , is the cell face unit normal vector, and

the  vector  connecting the  left  and right  cell  centroids, e⃗ LR and its  unit  vector ̂e LR are  defined  in  Fig.  2-b.  More
recently, Nishikawa [24] proposed a new approach where the cell face gradient construction approach is derived from
an advection scheme applied to a hyperbolic diffusion model. The resulting viscous diffusion scheme has a consistent
approximation term and an adjustable high-frequency damping term with a coefficient alpha, and thus is referred to as
the alpha-damping scheme. Nishikawa considers the Hasselbacher augmentation terms, the bracketed terms in Eq. (6),
to be damping terms. Furthermore, Nishikawa makes the observation that this damping term is why the  face-tangent
method  is  a  robust  scheme on  highly  skewed  meshes.  He  attributes  this  robustness  to  the  face-tangent  schemes
dependence on the cell skewness term, 1 /( ̂n f ⋅ ̂eLR) , because as skewness increases, ( ̂n f ⋅ ̂eLR) decreases, thereby
increasing damping. When Nishikawa's hyperbolic diffusion-based approach [24] is applied to a cell-centered, finite-
volume scheme, it results in a reconstruction-based cell-face average gradient, ̂∇qv f

AD , that includes a damping term
that arises naturally due to an upwind method being used to discretize the construction of the cell-face average gradient.
In this reconstruction based cell-face average gradient method, aka, the alpha-damping scheme, q v f , and ̂∇qv f

AD ,
have the form

q v f =
(q v f

L +qv f
R )

2
and ̂∇ qv f

AD = ∇ qv f + α (
̂n f

∣ e⃗ LR ⋅ ̂n f ∣
) (qv

R
f − qv

L
f ) ,                     (7)

where α is a damping coefficient and q v f
L and q v f

R are the left and right higher-order-reconstructed viscous face
state variables. These state variables are reconstructed using Fromm's scheme where

                                                                   qv f
L = qv k L

+ ∇ qv
L ⋅ ⃗r L f ,                                                                     (8)

                                                                   qv f
R = qv kR

+ ∇ qv
R ⋅ ⃗r R f .                                                                     (9)

The first term in Eq. (7) is the consistent term approximating the face gradient, and the second term is the adjustable
damping term. Observe that the alpha-damping scheme reduces to the face-tangent method when 1) the reconstruction
is performed halfway between the two centroids across the face, instead of at the face, 2)  the absolute value is removed
from the skewness measure in the denominator and 3) α =1.

D. Construction of Gradients for Inviscid Flux, Viscous Flux and Source Terms. 
Equations  (1-9)  show  that  the  inviscid  and  viscous  fluxes  require  that  left  and  right  gradients,

∇qi
L , ∇qv

L , ∇qi
R , and ∇ qv

R of the inviscid and viscous primitive variables be computed. Moreover, the computation
of  turbulent  flow  requires   the  computation  of  cell  average  gradients  of  the  viscous  primitive  variables  for  the
construction of the turbulence model source terms. Therefore, a discussion regarding possible approaches using the
WLSQ method to compute these gradients, follows.

D.1. Cell-centered weighted least-squares gradients using a cell-centered solution.
The state of the art for the direct computation of cell-centered gradients has been the subject of extensive

research [4-12]. For a  detailed description of  the most popular  cell  average gradient WLSQ methods as  well  as a
recently developed method based on analysis of the least-squares coefficient matrix the reader is directed to Refs. [4 -7].
In the current work, we will consider the most popular cell average gradient stencils. These are the face neighbor of face
neighbors (FN2-CCG) and node neighbor (NN-CCG) cell-centered gradient stencils illustrated in Fig. 3 and Fig. 4
respectively.

Fig. 3 The 2-D FN2-CCG WLSQ stencil, {lk},  for cell, k (blue shaded area), 
on representative triangular and quadrilateral grids.
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Fig. 4 The 2-D NN-CCG WLSQ stencil, {lk}, cell, k (blue shaded area),
on representative triangular and quadrilateral grids.

D.2. Node-centered weighted least-squares gradients using a cell-centered cell-average solution.
Zhang [13-15] proposed a WLSQ 2-D method where the gradients are computed at the nodes and averaged to

the cells. Figure 5 presents the stencils required to define the gradients at the nodes, j=1, 2,… , N cell(k )
nodes for a cell,  k,

where, N cell (k )
nodes , is the number of nodes that surround cell  k, on grids made up of triangular and quadrilateral control

volumes, respectively. These nodal gradients can, in turn, be used to construct face-averaged nodal gradients (F-ANG),
and the cell-averaged nodal gradients (C-ANG) [2,3]. To compute the gradient of a solution variable q at a node, j, we
use the set, {lj}of  N ≥ 3, of the nearby cells that share the node (i.e., a gradient stencil).  It is important  to note  that  the

Fig. 5 The 2-D stencils {li}, for computing the WLSQ gradients at the nodes j=1, 2,… , N cell (k)
nodes

for cell, k (blue shaded area), on representative triangular and quadrilateral grids.

solution  values are  not  available at the nodes because  numerical  solutions  are  stored  at cells in  the cell-centered
finite-volume method. Which, as pointed out by Zhang [13-15], requires the inclusion of the solution value at the node
as an additional unknown when formulating the least-squares problem. Therefore, because we are ultimately interested
in 3-D, we fit a linear polynomial over {lj} such that:

                                     ql=q j+∂ x q j( xl−x j)+∂ y q j ( yl− y j )+∂z q j ( z l−z j) ,  l  ∈ {li},                                           (10)

where,  j  ∈ {li}, (xj, yj, zj) and (xl, yl, zl) denote the coordinates of the node, j, and the set of neighbor cells, l, respectively,
and q j, ∂x q j , ∂ yq j , ∂ zq j is the solution vector containing the solution and derivative that we wish to compute at node j.
To determine the unknowns, we need at least three and four cells around the node in 2-D and 3-D, respectively. For
interior nodes, such as shown in Fig. 5, there are always sufficient cells available for the LSQ problem to be solved.
However, at boundary nodes, as shown in Ref. [2], the stencil size may result in an underdetermined LSQ problem. In
the current work we follow he approach described in Ref. [2]. However, the best way to augment the stencil remains
and open area of research. Following Zhang [13-15], we employ the WLSQ formulation:

                                                                                          Ax = b,                                                                                   (11)
where

       A =

w1
n

⋮
wl

n

⋮
wN node ( j )

cells

n

w1
n(x1− x j )
⋮

w l
n( xl−x j)
⋮

wNnode ( j )
cells

n (xN node (j )
cells −x j )

w1
n ( y1− y j )
⋮

w l
n( y l− y j)
⋮

w Nnode ( j )
cells

n ( yN node ( j )
cells − y j)

w1
n(z1−z j)
⋮

wl
n (z l− z j)
⋮

wNnode ( j )
cells

n (z Nnode ( j )
cells − z j )

, x =

q j

∂ x q j

∂ y q j

∂z q j

, b =

w1
n q1

⋮
wl

nql

⋮
wN k

n qN node ( j )
cells

,    (12)

N node ( j )
cells is the number of cells that surround node j and w l

n is the weight applied to the equation corresponding to the 
neighbor cell l. The following inverse-distance weight is widely used in finite-volume methods:

                                                   w l
n= 1

d l
p (n) , d l=√(x l− x j)

2+( y l− y j)
2+( z l− z j)

2 ,                                                   (13)

where p(n) is a parameter ranging from zero (unweighted LSQ) to one (fully weighted LSQ) and n =1, 2 or 3, where
n=1 refers to the parameter used for the WLSQ gradients used in the inviscid flux reconstruction,  n=2 refers to the
parameter used for the WLSQ gradients used in the construction of the cell face gradients for the viscous flux and n=3
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refers to the parameter used for the WLSQ gradients used in the construction of turbulence model source terms. With
typically p(1)=0 and p(2,3)=1.  The overdetermined WLSQ system defined by Eqs. (11-13), can be solved in various
ways.  We  choose  to  use  QR  factorization  via  the  Householder  transformation  [25],  which  directly  solves  the
overdetermined system as

                                                                                        x = R−1Qb,                                                                                (14)
where Q is the orthonormal matrix and R is the upper triangular matrix generated from A by the QR factorization. The 
solution can then be expressed in the following form:

                                                                         ∇q j =

q j

∂ x q j

∂ y q j

∂ z q j

= ∑
l ∈ { g l}

c jl
q

c jl
x

c jl
y

c jl
z

q l ,                                                            (15)

where cq
jl, cx

jl, cy
jl and cz

jl are the WLSQ coefficients to be computed and stored at all nodes once for a given stationary
grid.  From Eq.  (15),  it  is  clear  that  the cost  of  the gradient  calculation is  directly proportional  to  the  number  of
neighbors involved in the node WLSQ stencil. Furthermore, since we choose to not use the solution value at the node
we only need to store the coefficients for the gradient, such that:

                                                      ∇q j =
∂ x q j

∂ y q j

∂ z q j

= ∑
l∈ { g l }

c jl
x

c jl
y

c jl
z

ql .                                                            (16)

         As previously mentioned, there are 2 approaches that use nodal gradients to compute the gradients needed to
compute the cell face fluxes. These are the C-ANG approach of Zhang [13-15], which he refers to as a vertex-weighted
least-squares  (VWLSQ(n))  approach  where  n is  the  least-squares  weight  coefficient  and  the  F-ANG approach  of
Nishikawa [3]. 

In  the  C-ANG  approach,  the  inviscid  and  viscous  cell  nodal  averaged  gradients, ∇qik and ∇qvk ,
respectively are constructed as the arithmetic average of the nodal gradients from the nodes that define the cell with

∇qi k = [ ∑
j=1

N cell (k )
nodes

∇ qi j ] /N cell (k )
nodes ,                                                                (17)

  ∇qv k = [ ∑
j=1

N cell(k )
nodes

∇ q v j ] /N cell (k )
nodes ,                                                                (18)

where N cell(k )
nodes is 3 or 4 in 2-D for triangles or quadrilaterals cells, respectively, and 4, 5, 6 or 8 in 3-D for tetrahedral,

pyramidal, prismatic or hexahedral cells, respectively. These cell average gradients are then used to define the inviscid
and viscous left and right gradients, ∇qi

L , ∇qv
L , ∇qi

R , and ∇qv
R that appear in Eqs. (1-9) to compute the inviscid and

viscous fluxes where
∇qi

L = ∇ qik L
and ∇qi

R = ∇qi kR
                                                              (19)

                                                              ∇qv
L = ∇ qv k L

and ∇qv
R = ∇qv k R

                                                              (20)

where ∇qi kL
, ∇qi kR

and ∇qv k L
,∇q v kR

are  the  left  and  right,  inviscid  and  viscous,  C-ANG  WLSQ  gradients

respectively, defined by Eqs. (16,17,18). 

In  the  F-ANG  approach,  the  inviscid  and  viscous  face  nodal  averaged  gradients, ∇qif and ∇qvf ,
respectively, are  computed as the arithmetic average of the nodal gradients from the nodes that define the cell face with

∇qi f = [ ∑
j=1

N face (m )
nodes

∇ qi j ] /N face(m )
nodes ,                                                                (21)

  ∇qv f = [ ∑
j=1

N face(m )
nodes

∇ q v j ] /N face(m )
nodes ,                                                                (22)

where N face (m )
nodes is the number of nodes that define a face,  m, which is 2 in 2-D, and 3 or 4 in 3-D for triangular and

quadrilateral faces, respectively. These face averaged gradients, are then used to define the left and right. inviscid and
viscous  gradients, ∇qi

L , ∇qi
R and ∇qv

L , ∇qv
R that  appear  in  Eqs.  (1-9).  As  was  noted  in  Refs.  [2,3]  the  F-ANG

approach results in the following condition with respect to the left and right inviscid and viscous gradients

∇qi
L = ∇ qi

R = ∇ qi f ,                                                                     (23)

∇qv
L = ∇ qv

R = ∇ qv f .                                                                     (24)
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There are three reasons that the average nodal gradient approach is potentially superior to the conventional
cell-average gradient method. First, the number of nodes is typically smaller than the number of cells in unstructured
grids, especially in 3-D on tetrahedral grids, where it is 5-6 times smaller, thus requiring less storage for the gradients (if
one chooses to store them). Moreover, if the nodal gradients are computed using a least-squares method, as described in
Eq. (10-16), using the cells surrounding the node, the number of  coefficients that need to be computed and stored can
be significantly smaller than that required for the cell-centered least-squares method for cell gradients described in
section D.1. Second, the face gradient involves fewer cells than the average of cell gradients at a face, which  results in
a  reduction in  the  size  of  the residual  stencil.  Third,  since  the gradients  are computed at  the cell  nodes there is,
depending on how the gradient limiting is performed, potentially no need to communicate gradient information between
processors.

D.2.1. Stable Techniques for Using Node-Centered Gradients to Construct the Inviscid Flux. 
In the case of the 2-D hybrid grid cell face shown in red in Fig. 1, three approaches for computing the gradients

required to compute the cell face inviscid flux are illustrated in Fig. 6 where lt and lq denote stencil cells associated with
triangular and quadrilateral cells, respectively. The three approaches are: a) the F-ANG approach [3], b) the C-ANG
approach [13-15], and c) the hybrid  face and cell averaged nodal gradient approach (FAC-ANG) proposed, analyzed
and demonstrated in 2-D in Ref. [2]. Figure 6-a shows that F-ANG results in the most compact flux stencil while Fig. 6-
b shows that C-ANG results in the least compact stencil. In Ref. [2], it was shown, via Fourier analysis, that inviscid
fluxes computed using F-ANG are unstable on quadrilateral grids, implying that computing inviscid fluxes using F-
ANG will also be unstable on hybrid grids containing quadrilaterals. However, Zhang has shown in Refs. [13,14] that
the C-ANG approach is stable on triangular, quadrilateral, and hybrid grids. Therefore, to obtain 1) a stable inviscid flux
and 2) the smallest possible residual stencil on hybrid grids, the FAC-ANG approach was proposed in Ref. [2]. FAC-
ANG, as illustrated in Fig. 6-c, uses F-ANG for the triangular cell side face inviscid flux reconstruction and C-ANG for
the quadrilateral cell side face inviscid flux reconstruction. 

Fig. 6 The 2-D stencils {li}, for computing the WLSQ gradients at the nodes, j
1-N

,

for control volume, k (blue shaded areas), on representative triangular and quadrilateral grids.

The extension of  FAC-ANG to 3-D on hybrid grids that may include tetrahedral, pyramidal, prismatic and/or
hexahedral cells proceeds as follows: at the cell face, determine if the face is a quadrilateral or a triangle, if the face is a
quadrilateral, then construct ∇qi

L and ∇qi
R for the cells that share the face, using C-ANG if a cell is a hexahedral and

F-ANG if it is not a hexahedral. Or, if the face is a triangle, then construct ∇qi
L and ∇qi

R for the cells that share the
face, using C-ANG if the cell is a prism and F-ANG if the cell is not a prism. The 3-D extension of the FOC-ANG
approach uses the same logic as the FAC-ANG approach and then forces both cells that share the face to use the C-
ANG approach if either cell that share the face uses the C-ANG approach.  

D.2.2 Stable Techniques for Using Node-Centered Gradients to Construct the Viscous Flux.
In Ref. [2], it was shown that using F-ANG to compute the viscous fluxes is stable independent of the cell

topology due to the damping terms in the viscous flux construction Eqs. (6,7). However, it was also shown in Ref. [2]
that while using F-ANG to compute ∇qv

L and ∇qv
R is stable, using a consistent approach to compute the gradients for

the inviscid and viscous fluxes resulted in the best convergence behavior. This observation, obtained in a 2-D code, has
not  been observed in the 3-D implementation in the VULCAN-CFD code. In  3-D, using the F-ANG approach to
compute ∇qv

L and ∇qv
R , independent of cell topology and how ∇qi

L and ∇qi
R are computed, has been observed to

be the more robust approach. Moreover, as will be shown in section III, when test case B, which uses a 2-D grid, is run
in the 3-D code very little difference in convergence behavior between using F-ANG and FAC-ANG to compute the
gradients was observed. The reason for this difference in behavior between the 2-D code and the 3-D code is currently a
subject of additional research. One possible explanation is that the difference in behavior is not due to 2-D versus 3-D
but is due to the choice of test problems that have been run in the 2-D and 3-D codes. The 2-D test problems run to date
have been calorically perfect canonical inviscid and viscous laminar flows to establish the stability and accuracy of the
numerical approach, Whereas, the problems run in the 3-D code are calorically-imperfect and/or thermally-imperfect 2-
D and 3-D hypersonic turbulent flows that  contain strong shocks that  interact  with the boundary layers  and other
viscous flow features. Figure 7 illustrates the number of cells and nodes involved in the construction of the viscous flux

7

 

a) F-ANG b) FAC-ANGb)  C-ANG

l
t

l
t

l
q

l
q

l
q

l
q

l
q

j
4

i
2

l
t

l
q

l
t

l
t

l
t

l
q

l
q

l
q

l
q

l
q

j
1

j
3

l
q

l
t

L R

j
2

l
t

l
t

l
t

l
t

l
t

l
t

l
q

l
q

l
q

l
q

l
q

j
4

i
2

l
t

l
q

l
t

l
t

l
t

l
t

l
t

l
t

l
t

l
q

l
q

j
5

l
t

l
q

l
t

L R

j
2

j
1

l
t

l
t

l
q

l
q

l
q

l
t

l
t

l
t

l
t

l
q

l
q

l
q

l
t

l
t

L R

j
1

j
2

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

28
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

0-
06

52
 



contributions to the residual of a quadrilateral cell on a uniformly spaced quadrilateral grid. Figure 7-a shows that the
residual stencil that results from using the C-ANG approach to average the node-centered gradients to the cells that
share a face with the blue control volume results in a significantly bigger stencil than when the F-ANG approach,
shown in Fig. 7-b, is used to average the the node-centered gradients to the faces of the blue control volume. The
resulting “compact” nature of the viscous residual stencil produced by the F-ANG approach may have a stabilizing
effect when there are strong shocks present.

Fig. 7 The cells used to compute the viscous flux contribution to the residual of a quadrilateral control volume
(blue shaded area), on a quadrilateral grid, where the C-ANG or F-ANG approaches are used

to average the nodal  (   )  WLSQ gradients, to the locations ( x ),
 that are used to compute cell face viscous flux gradients, ∇qv f .

D.3. Construction of Gradients for Turbulence Transport Equation Source Terms.
The  turbulence  transport  equation  source  terms  require  the  computation  of  cell-average  gradients  of  the

viscous variables. In the current work, these gradients are formed using Eq. (18) to compute the cell average gradient
from the WLSQ node-centered gradients of the viscous primitive variables that were computed for the viscous fluxes.
These node-centered gradients are only needed for the cells in the interior of the computational domain eliminating the
need  to  communicate  them  between  processors  when  computing  using  a  parallel  processing  paradigm.  On  a
quadrilateral grid, this results in a stencil for the source term gradients that involves nine cells that looks like Fig. 7-b.

E. Inviscid Flux Cell-Average Gradient Limiter Construction.
Being primarily interested in the computation of hypersonic flows containing strong discontinuities, gradient

limiters are crucial to the development of a robust numerical scheme. Therefore, the current gradient limiter approach is
based on the modified version of MLP approach of Park and Kim [26] extensively described in Refs. [4-7]. The MLP
gradient limiter stencil for reconstruction at a cell face on a mixed-element grid, when using node-centered gradients, is
illustrated in Fig. 8. Where the limited reconstructed left and right states can be obtained using Fromm's scheme

                                                                   qi f
L = qi kL

+ Φ k L

MLP ∇qi
L ⋅ r⃗L f                                                                (25)

                                                                  qi f
R = qi kR

+ Φ k R

MLP ∇qi
R ⋅ ⃗r R f ,                                                              (26)

or the UMUSCL scheme as

                                              qi f
L = qi kL

+ Φ k L

MLP {Φ kL

MLP χ
2
(qi kR
−qi kL

) + (1−χ )(∇ qi
L ⋅ ⃗r L f )}                                  (27)

                                             qi f
R = qi kR

+ Φ k R

MLP {Φ k R

MLP χ
2
(qi k L
−qi kR

) + (1− χ ) (∇qi
R ⋅ ⃗r R f )}                                   (28)

Fig. 8 Left, l
L,
 and right, l

R
, cells participating in the computation of the MLP limiter coefficients, Φ k L

MLP

and Φ k R

MLP , respectively,  when reconstructing q if
L and q if

R . at the red cell interface

when an averaged nodal gradient approach is used to form ∇qi
L and ∇qi

R .
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a)  C-ANG (21 cells) b)  F-ANG (9 cells)
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where Φ k L

MLP and Φ k R

MLP are  MLP gradient limiter coefficients of the left and right cells, respectively,  when  the C-

ANG, FOC-ANG, FAC-ANG or F-ANG approach is used to form ∇ qi
L or ∇qi

R . This approach is based on extensive
numerical experimentation  and it should be noted that this is the same stencil as when the NN-CCG approach is used to
form ∇qi

L or ∇qi
R.  

III. Numerical Results and Discussion
 Three canonical 2-D hypersonic flows and one 3-D scramjet inlet flow were computed to demonstrate the

numerical  behavior  of  the extension of  the 2-D FAC-ANG approach of  Ref.  [2]  to  3-D and compare it  with the
conventional NN-CCG approach. To the best of our knowledge, the 3-D F-ANG approach is a novel approach, therefore
we begin with a numerical experiment where we investigate it's numerical characteristics on a pure tetrahedral grid.
This is followed by a second canonical flow on a grid designed to test the behavior of the FAC-ANG and FOC-ANG
approaches for  a 2-D flow using a 2-D hybrid grid.  We then compute a third canonical  flow designed to test  the
behavior of the FAC-ANG and FOC-ANG approaches for a 2-D flow and using 3-D hybrid grid. Finally, the University
of Queensland experimental investigation of a 75% scale replica of the HIFiRE 7 REST scramjet engine conducted in
the T4 Stalker Tube [27] is simulated using the FAC-ANG, FOC-ANG and NN-CCG approaches and the results are
compared with the experimental data. All computations were performed using a 2nd-order cell-centered finite-volume
solver [4] implemented in the VULCAN-CFD code. The upwind shock capturing scheme is based on inviscid fluxes
computed using either the LDFSS [17] or HLLC [18] approximate Riemann solvers where the higher-order cell-face
states are reconstructed using Fromm's method and the cell/face gradients are limited using a modified version [4,6] of
the MLP-u2 limiter of Park and Kim [26]. The viscous fluxes are computed using the alpha damped cell-face gradient
method of Nishikawa [24] except for the HIFiRE 7 case, which uses the face tangent method of Hasselbacher [21]. The
governing equations were  solved  implicitly combining local  time stepping using the  parallel  implementation of  a
Symmetric  Gauss-Seidel  (SGS)  scheme described  in  Ref.  [4]  using  1st-order  inviscid  and  thin  layer  viscous  flux
Jacobians. For each computation, stencil statistics and cost, contour plots of the flow solution, wall heat flux distribution
and convergence behavior were extracted and are presented. 
A . Hypersonic Turbulent Flow Over a 2-D Flat Plate Using a Grid Only Containing Tetrahedral Cells.

The first numerical experiment was chosen to investigate the numerical behavior of the 3-D extension and
implementation of F-ANG on a pure tetrahedral grid using a canonical 2-D hypersonic turbulent boundary layer flow.
This numerical experiment was conducted by computing thermally-prefect, chemically-frozen, turbulent flow of air
over a 2-D flat plate with freestream conditions of Mach number, M

ref
=6.0, static pressure, P

ref
= 2100.0 Pascals, static

temperature, T
ref

= 63.01 Kelvin, and unit Reynolds number, Re
ref

= 2.64x107/m, with the wall treated as an isothermal

(335.83  Kelvin),  no-slip,  solve-to-the-wall  boundary condition.  The Wilcox  (1998) k−ω two-equation  turbulence
model [30] was used to compute the Reynolds stresses and Reynolds heat flux (Pr

t
=0.9), and the turbulence model

production term was based  on the   magnitude  of  the vorticity.  The 2-D geometry was  discretized to  form a 3-D
computational domain using the Pointwise® unstructured grid generator. The resulting grid consisted of triangles on the
surface of the plate and a 3-D grid of 582,605 tetrahedral cells as shown in Fig. 9. The boundary conditions were: 1)
reflection of all variables at the min. and max. Z-direction boundary cell faces, 2) specification of all variables on the
min. X-direction boundary cell faces, 3) 1st-order extrapolation of all variables at the max. X- and Y-direction boundary
cell faces  and 4) a no-slip, isothermal, solve-to-the-wall BC on the min. Y-direction wall boundary cell faces. The
computational domain was decomposed into 24 partitions. The governing equations were solved implicitly, in a fully
coupled manner,  using local  time stepping,  and the global CFL number was linearly varied from 0.1 to 250 over
iterations 1 to 500. The FAC-ANG approach was used, which recovers the F-ANG approach for tetrahedral cells, to
compute the gradients on this 3-D tetrahedral grid.  Computations were performed using the NN-CCG and F-ANG
approaches with all other input parameters remaining unchanged. 

Table  1  presents  the  stencil  statistics  of  the  NN-CCG and node-centered  gradient  (NCG)  approaches.  In
addition, the cost and relative cost of computing the WLSQ gradients, where the cost is defined as the number of WLSQ
locations (the number of cells for the cell-centered gradient and the number of nodes for the node-centered gradient
approaches, respectively), times the mean stencil size. These figures of merit indicate that the node-centered gradient
approach produced stencils that were smaller in the mean as well as having a much smaller standard deviation. Table 1
also reveals that  the F-ANG approach required approximately 14 times less storage and operations to compute the
gradients than the NN-CCG approach.

Table 1  Stencil statistics and cost of the gradient approaches used to compute the 2-D flat plate. 

WLSQ 
Gradient
Approach

Number of
WLSQ
Stencils

Minimum
Stencil

Size

Mean
Stencil

Size

Maximum
Stencil

Size

Stencil Size
Standard
Deviation

WLSQ Cost
(No. of Stencils x  

   Mean Stencil Size)

WLSQ
Relative

Cost 

NN-CCG 582,605 (cells) 4 66.1 106 11.2 38510191 1.0

NCG (F-ANG) 116,469 (nodes) 6 23.3 46 1.91 2713728 1.0 / 14.2 
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Figure 10 presents a comparison of Mach number and static pressure contours. The flow solution can be seen
to be nearly oscillation free with the weak leading edge shock caused by the rapid growth in the displacement thickness
during  the  initial  boundary  layer  formation  with  the  weak  leading  edge  shock  being  captured  with  only  minor
differences. Figure 11 presents a comparison of the axial distribution of the wall heat flux. The heat flux computed
using the F-ANG approach is shown to be significantly less noisy than the heat flux computed using the NN-CCG
approach. This result is very encouraging since, as was stated in the introduction, we are interested in gradient methods
that  work  better  than  the  current  state-of-the-art  on  tetrahedral  grids  due  to  our  interest  in  tetrahedral-based
unstructured-grid adaptation. Figure 12 presents a comparison of the convergence history of the reduction of the L 2

norm of the residual  showing that both gradient approaches produced essentially identical convergence behavior. 

B. Hypersonic Turbulent Flow Over a 2-D Backward Facing Step Using a Grid Containing Prismatic and Hexahedral Cells.

The second numerical experiment was chosen to investigate the numerical behavior of the 3-D extension and
implementation of  FAC-ANG, and  the  alternative  approach,  FOC-ANG, on a 2-D grid containing hexahedral  and
prismatic cells. This flow was chosen because it contains a multiplicity of hypersonic flow phenomenon, 1) turbulent
boundary  layers,  2)  a  strong  expansion,  3)  a  turbulent  free  shear  layer,  and  4)  a  shock-turbulent-boundary-layer
interaction. This numerical experiment was conducted by computing the hypersonic calorically perfect, chemically-
frozen, turbulent flow of air over a 2-D backward facing step with freestream conditions of, Mach number, M

ref
=6.356,

static pressure, P
ref

= 50,662.58 Pascals, static temperature, T
ref

= 1297.75 Kelvin, ratio of specific heats, gamma
ref

= 1.4,

and unit Reynolds number,  Re
ref

= 1.2891x107/m,  with the no-slip wall treated as isothermal (1172.6 Kelvin), using a

turbulent wall matching boundary condition [28]. The Wilcox (2006) k−ω two-equation turbulence model [29] was
used to compute the Reynolds stresses and Reynolds heat flux (Pr

t
=0.9)  and the turbulence model production term was

based on the  magnitude of the vorticity. The 2-D geometry was discretized to form a 3-D computational domain using
the Pointwise® unstructured grid generator. The resulting grid consisted of triangular and quadrilateral 2-D cells, as
shown in Fig. 13, extruded in the Z-direction to form a 3-D grid of 15,781 prismatic and 8,168 hexahedral cells for a
total of 23,949 cells. The boundary conditions were: 1) reflection of all variables at the min. and max. Z-direction
boundary  cell  faces,  2)  specification  of  all  variables  on  the  min.  X-direction  boundary  cell  faces,  3)  1st-order
extrapolation of all variables at the max. X- and Y-direction boundary cell faces and 4) isothermal no-slip wall-matching
construction  of  all  variables  on  the  min.  Y-direction  wall  boundary  cell  faces.  The  computational  domain  was
decomposed into 6 partitions. The governing equations were solved implicitly, in a fully coupled manner, using local
time stepping, and the global CFL number was linearly varied from 0.1 to 250 over iterations 1 to 500.

Table 2 presents the stencil statistics of the NN-CCG and node-centered gradient (NCG) FAC-ANG and FOC-
ANG approaches. These figures of merit show that the node-centered gradient approach produced stencils that were
smaller in the mean as well as having a lower standard deviation. Table 2 also reveals that the NCG approaches required
approximately 2.4 times less storage and operations to compute the gradients than the NN-CCG approach.

Table 2 Stencil statistics and cost of the gradient approaches used to compute the 2-D backward facing step. 

WLSQ 
Gradient
Approach

Number of
WLSQ
Stencils

Minimum
Stencil

Size

Mean
Stencil

Size

Maximum
Stencil

Size

Stencil Size
Standard
Deviation

WLSQ Cost =
(No. of Stencils x  

   Mean Stencil Size)

WLSQ
Relative

Cost 

NN-CCG 23,949 (cells) 13 33.8 53 6.2 809476 1.0

NCG 32,762 (nodes) 6 10.1 18 2.5 330896 1.0 / 2.4

Figure 14 presents a comparison of contour plots of Mach no. (filled) contours and the static pressure (black
lines) contours  using the NN-CCG and FAC-ANG approaches. The FOC-ANG approach is not shown because its
solution was essentially identical to the FAC-ANG solution. Both flow solutions are very similar and can be seen to be
nearly oscillation-free with the incident shock caused by the reattachment of the separation bubble being captured
without apparent difficulty. Figure 15 presents a comparison of the axial distribution of the wall heat flux. The heat flux
computed using all three approaches are nearly identical and do not contain the oscillations that were observed in the
tetrahedral-grid-based flat plate results. Figure 16 presents a comparison of the convergence behavior of the NN-CCG,
FAC-ANG and  FOC-ANG approaches,  showing that  the  averaged  nodal  gradient  (ANG)  approaches  gave  nearly
identical convergence behavior and that the NN-CCG approach convergence was slightly better. This result is consistent
with the 2-D convergence behavior observed in Ref. [2].

C. Hypersonic 2-D Turbulent Flow Over a 2-D Blunt Wedge Using a Grid Containing Tetrahedral, Pyramidal, Prismatic and
Hexahedral Cells.

The third numerical experiment was chosen to test the behavior of the FAC-ANG and FOC-ANG approaches
using a 2-D flow and a 3-D hybrid grid containing tetrahedral, prismatic, pyramidal and hexahedral cells. This flow was
chosen because it contains a strong Mach 8 blunt body normal shock that is a good test of the robustness of the shock
capturing scheme. This tests the implementation of the node-centered gradients on all element types allowed by the
code thus testing the behavior of the FAC-ANG and FOC-ANG approaches for hexahedrals that share faces with both
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pyramidal and prismatic cells. This numerical experiment was conducted by computing hypersonic, thermally-prefect,
chemically-frozen,  turbulent flow over a blunt wedge representing a scramjet  forebody or cowl leading  edge (this
particular geometry uses the same diameter blunt body as the REST inlet cowl [27]) . The freestream conditions were:

P
ref

= 1675.0 Pascals, T
ref

= 226.7 Kelvin,
 
and Mach number, M

ref
= 8.0. A thermally-perfect air gas mixture was used to

simulate the test gas, which, at the given  conditions, yields a unit Reynolds number of Re
ref

= 2.9467x106/m. The wall

surface was treated as a no-slip, isothermal (300.0 Kelvin) wall, using a turbulent wall matching boundary condition
[28].  The  Menter  Baseline  two-equation  turbulence  model  [31]  was  used  to  compute  the  Reynolds  stresses  and
Reynolds heat flux (Pr

t
=0.9), and the turbulence model production term was based on the  magnitude of the vorticity.

Convergence was achieved by “freezing” the gradient limiter after 1500 time steps to prevent convergence stalling due
to  limiter  “ringing”.  The  blunt  wedge  geometry  was  discretized  to  form  a  3-D  computational  domain  using  the
Pointwise® unstructured grid generator. The resulting grid consisted of quadrilaterals on the surface of the wedge that
were extruded normal to the surface to form layers of hexahedral cells in the near wall, which were transitioned to
tetrahedral cells via a layer of pryamidal cells to form a 3-D grid of 364,380 hexahedral, 14,840 prismatic, 67,519
pyramidal and 647,424 tetrahedral  cells for a total  of 1,094,163 cells presented in Figs.  17 and 18. The boundary
conditions were: 1) reflection of all variables at the min. and max. Y-direction boundary cell faces, 2) specification of all
variables on the parabolic-shaped freestream surface boundary cell faces, 3) 1 st-order extrapolation of all variables at the
max.  X-direction  boundary  cell  faces  and  4)  isothermal  wall-matching  on  the  wall  boundary  cell  faces.  The
computational domain was decomposed into 24 partitions. The governing equations were solved implicitly, in a fully
coupled manner, using local time stepping, and the global CFL number was linearly varied from 0.1 to 50 and 50 to 250
over iterations 1 to 50 and 50 to 1000, respectively.  The gradient limiter  was frozen at  iteration number 1,500 to
eliminate limiter buzz that began to appear near iteration 600. 

Table 3 presents the stencil statistics of the NN-CCG and node-centered gradient (NCG) FAC-ANG and FOC-
ANG approaches. These figures of merit show that the node-centered gradient approach produced stencils that were
significantly smaller in the mean as well as having a much lower standard deviation. Table 3 also reveals that the NCG
approaches required approximately 9.1 times less storage and operations to compute the gradients than the NN-CCG
approach.

Table 3 Stencil statistics and cost of the cell and node-centered gradient approaches for the 2-D blunt body grid. 

WLSQ 
Gradient
Approach

Number of
WLSQ
Stencils

Minimum
Stencil

Size

Mean
Stencil

Size

Maximum
Stencil

Size

Stencil Size
Standard
Deviation

WLSQ Cost =
(No. of Stencils x  

   Mean Stencil Size)

WLSQ
Relative

Cost 

NN-CCG 1,094,163 (cells) 4 54.5 133 22.18 59631884 1.0 

NCG 522,401 (nodes) 6 12.8 50 4.96 6686733 1.0 / 9.1

Figures 19 and 20 present contour plots of Mach number using the FAC-ANG approach and are typical of the
results obtained  using all three approaches. Figures 19 and 20 show that the flow solution can be seen to be nearly
oscillation free with the bow shock being well captured. Figure 20, which presents a close up of the blunt body bow
shock on the cutting plane grid presented in Fig. 18, is carbuncle free and well captured in approximately three cells in
the hexahedral cell part of the grid in the vicinity of the stagnation streamline. Figure 21 presents a comparison of the
normalized wall heat flux versus normalized arclength showing that all three gradient approaches produced results that
are nearly identical. Figure 22 presents a comparison of the convergence history of the reduction of the L2 norm of the
residual for all three gradient approaches, showing that the FAC-ANG and FOC-ANG approaches produced similar
convergence behavior until the the limiter was frozen. After the limiter was frozen, the NN-CCG, FAC-ANG and  FOC-
ANG approaches all gave similar asymptotic convergence behavior. However, it should be noted that  the FAC-ANG
approach produced a small spike near iteration 1700 that is absent from the FOC-ANG and NN-CCG residual histories.
This may be an indication that the FOC-ANG approach may be preferable to the FAC-ANG approach on truly 3-D
grids, when there are large numbers of pyramidal and/or prismatic cells that share a face with a hexahedral cell.

D. HIFiRE 7  REST Scramjet  Engine Shock Tunnel  Data  Using a  Grid Containing Tetrahedral,  Pyramidal,
Prismatic, and Hexahedral Cells.

 The University of  Queensland experimental  investigation of  a  75% scale replica of the HiFiRE 7 REST
scramjet engine conducted in the T4 Stalker Tube [27] has been simulated previously using the unstructured-grid solver
[4,7]. An early implementation of the fn2 stencil was used in Ref. [4] and more efficient stencil based on the Frabenius
Norm were used in Ref. [7] and very good comparisons with the inlet centerline  experimental data were obtained. In
the current work, the unstructured-grid solver was again used to compute the zero degrees  angle-of-attack tare (no fuel
injection)  test  point.  As  previously,  the  bilateral  symmetry  of  the  model  geometry  was  exploited  to  generate  a
computational mesh for half of the REST scramjet flow path shown in Fig. 23, using the Pointwise® unstructured grid
generator. The resulting surface grid was predominantly made up of triangles with quadrilaterals being used along the
blunt leading edges and in the internal portion of the flow path. This surface grid was then marched normal to the wall
surface into the interior of the computational domain to form a boundary layer grid made up of prisms and hexes. This
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boundary layer grid then transitioned into pyramidal and tetrahedral cells resulting in a mixed cell grid. The resulting
grid had a total of 44,568,851 cells consisting of 19,198,513 tetrahedral, 1,436,197 pyramidal, 18,455,646 prismatic,
and 5,488,495 hexahedral cells. The grid was decomposed into 768 partitions. 

In Ref. [4], the unstructured-grid solver was run with an early implementation of the FN2-CCG stencil, with
the same inflow/reference conditions that Chan et  al. used in Ref.  [27] to perform their CFD simulation using the
VULCAN-CFD structured-grid solver. These conditions were:

 
P

ref
= 1675.0 Pascals,  T

ref
= 228.0 Kelvin,

 
and velocity,

U
ref

= 2379 m/s. As mentioned above, the zero degree angle-of-attack, tare case, was selected. However, it is important

to note that the angle-of-attack convention reported in [27] is relative to the combustor centerline. The angle-of-attack
relative to the x-axis, which runs parallel to the forebody  plate, is 6 degrees, as shown in Fig. 23. A thermally-perfect,
chemically-frozen air gas mixture was used to simulate the test gas, which at the given reference conditions yields a
Mach number, M

ref
, of 7.845 and a unit Reynolds number of Re

ref
= 4.1x106/m. The model surfaces were treated as no-

slip, isothermal (300.0 Kelvin) walls, using the Wilcox wall matching formulation [28]. The Menter Baseline two-
equation turbulence model [31] was used to compute the Reynolds stresses and Reynolds heat  flux (Pr

t
=0.9).  The

boundary layer trips were not modeled. The computational domain was initialized to the reference conditions, and a 5-
mm thick “initial boundary layer” was constructed by linearly blending the no-slip isothermal wall condition into the
interior of the computational domain. The cell face gradients for the viscous fluxes, ∇qv f were computed using the
face tangent approach of Hasselbacher [21] for the current results to be consistent with the results presented previously
[4,7].

A Mach contour plot on the symmetry plane of the forebody and inlet, superimposed over the computational
grid, is presented in Fig. 24.  All three gradient approaches produced solutions with nearly identical contours and only
the FAC-ANG results are shown. Figure 24 illustrates the small size of the forebody and cowl leading edges relative to
the forebody boundary layer  thickness.  In  addition, Fig.  24 shows that the shocks are captured without significant
oscillations and that the forebody leading edge and forebody compression corner shocks are both captured with a small
number of cells even where the grid is predominantly tetrahedral in nature.

Table 4 presents the stencil statistics of the NN-CCG and node-centered gradient (NCG) FAC-ANG and FOC-
ANG approaches. These figures of merit show that the node-centered gradient approach produced stencils that were
significantly smaller in the mean as well as having a much lower standard deviation. Table 4 also reveals that the NCG
approaches required approximately 8.5 times less storage and operations to compute the gradients than the NN-CCG
approach.

Table 4 Stencil statistics and cost of the cell and node-centered gradient approaches for the HIFiRE 7 Inlet grid. 

WLSQ 
Gradient
Approach

Number of
WLSQ
Stencils

Minimum
Stencil

Size

Mean
Stencil

Size

Maximum
Stencil

Size

Stencil Size
Standard
Deviation

WLSQ Cost =
(No. of Stencils x  

   Mean Stencil Size)

WLSQ
Relative

Cost 

NN-CCG 44,568,851 (cells) 4 51.8 129 19.1 2,308,666,482 1.0 

NCG 18,805,899 (nodes) 5 14.5 141 4.07 272,685,536 1.0 / 8.5

Figure 25 presents a comparison of the convergence history of the reduction of the L2 norm of the residual for
the NN-CCG, FAC-ANG and FOC-ANG computations. The computation was run for 1250 iterations using a 1st-order
advection scheme to establish the flow. The advection scheme was then switched to the 2nd-order scheme, and the
solution was run an additional 2250 iterations. The gradient limiter was then frozen at iteration 3000, which can be seen
in the residual plot  in Fig.  25, as an abrupt drop in the residual.  The solution was then run for an additional  500
iterations to make certain that each solution was stable with the frozen limiter. It was deemed “safe” to freeze the limiter
at cycle 3000 because the mass flow error, surface integrated heat transfer, as well as the integrated forces and moments
had all reached an asymptotic value. This approach resulted in the L2 of the Residual of the NN-CCG, FAC-ANG and
FOC-ANG approaches converging approximately at least 6.0 orders of magnitude relative to the maximum value. The
convergence of the NN-CCG approach appears to be the best plateauing at a minimum value of 6.4 orders of magnitude
lower than the maximum value near iteration 2500 with the limiter freezing having no discernible effect. The nodal-
averaged gradient methods are shown to have only converged 5 orders of magnitude at iteration 2500 and they do not
reach 6 orders until after the limiter is frozen. This difference in the achieved level of convergence before and after the
freezing of the limiter suggests that the limiter is acting more aggressively in the computations using the FAC-ANG and
FOC-ANG approaches. Further investigation of this behavior is planned as future work.

The body side and inlet cowl side wall static pressure at the symmetry plane are presented in Figs. 26 and 27
showing that the comparison of the wall pressure distribution with respect to the experimental wall pressure data is very
reasonable. Figures 28 and 29 present a comparison of the body and cowl centerline wall heat flux using the four
stencils. All three gradient approaches give very similar “global” wall heat transfer distributions, in terms of the location
and number of minima and maxima on the body and  cowl  side. However, on the cowl side, the FAC-ANG and FOC-
ANG approaches are essentially identical; there are some small differences between them and the NN-CCG approach at
select minima and maxima locations that are highlighted in Fig. 29.
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IV. Summary and Conclusions

The development of a novel gradient construction approach was pursued due to a near-term desire to reduce, in
terms of computational effort and storage, the cost of computing weighted least-squares gradients (WLSQ) on general
unstructured grids. We were further motivated by a long term need to improve the fidelity and robustness of the cell-
centered,  finite-volume,  unstructured grid method on the highly skewed tetrahedral  grids  that  can be produced by
current tetrahedral cell unstructured grid adaptation algorithms.

In particular, the 2-D nodal-gradient approach of Zhang, a method for computing WLSQ gradients at the grid
nodes, and the related 2-D face-averaged nodal-gradient (F-ANG) approach of Nishikawa and White were described
and extended to 3-D. This resulted in the development a novel 3-D approach for the computation of WLSQ gradients at
the nodes,  the averaging of  those nodal gradients to the cell  face,  and the use of the averaged nodal gradients in
constructing  the  inviscid  and  viscous  fluxes  in  a  2nd-order  accurate,  cell-centered,  finite-volume  unstructured
tetrahedral-grid-based  solver.  The  fidelity  and  robustness  of  this  3-D  F-ANG  approach  was   compared  with  a
conventional,  3-D,  node-neighbor  cell-centered  gradient  approach  (NN-CCG) through the  simulation of   turbulent
hypersonic flow of thermally-perfect air over a flat plate using a highly stretched tetrahedral grid. For this tetrahedral
grid, the 3-D nodal gradient approach was found to reduce the cost of computing the WLSQ gradients by a factor of 14
compared to the 3-D NN-CCG approach. In addition, the 3-D F-ANG approach to constructing the gradients that are
required to compute the inviscid and viscous fluxes, was found to dramatically reduce numerical noise/oscillations in
the computed axial distribution of wall heat flux compared to the NN-CCG approach. Moreover, the convergence of
the F-ANG and NN-CCG approaches, on this high aspect ratio tetrahedral grid, were both found to be well behaved and
nearly identical.

In an effort to to make the nodal-gradient-based 3-D F-ANG approach more general, it was extended to include
grids that contain nonsimplex cells. This extension was achieved using an approach analogous to that described in the
recent paper by Nishikawa and White that developed an extension of the 2-D F-ANG approach to nonsimplex 2-D cells
by combining face and cell-averaged nodal gradients (C-ANG) in a cell topology dependent manner that was called
FAC-ANG.  The  3-D  extension  of  FAC-ANG  and  an  alternative  approach,  FOC-ANG,  were  described  as  was  a
multidimensional gradient limiter procedure that is consistent with the residual stencil. The nodal WLSQ gradient-based
FAC-ANG and FOC-ANG approaches as well as the cell-centered WLSQ gradient NN-CCG approach to computing the
gradients  were  tested  and  compared.   Three  numerical  test  cases  involving  2-D and  3-D,  noncalorically-perfect,
turbulent hypersonic flows, on 2-D and 3-D grids containing hexahedral, prismatic, pyramidal and tetrahedral cells were
used to perform these tests. Overall, these numerical tests revealed that the computational cost saving provided by using
a nodal WLSQ gradient approach on a grid containing nontetrahedral cells, while not as great as on pure tetrahedral
grids, was still between 2.4 and 9 times less than the cost of computing the WLSQ gradients using the NN-CCNG
approach. For the 2-D backward facing step and the 2-D blunt wedge numerical tests, the axial distribution of wall heat
flux and the convergence of the  L2 norm of the FAC-ANG and the FOC-ANG approaches were found to be nearly
identical. For the fully 3-D grid and 3-D hypersonic turbulent flow of the HIFiRE 7 REST scramjet inlet, the computed
wall pressures of all three approaches were in very good agreement with the experimental data. Moreover, the computed
body side and cowl side centerline axial wall heat flux distributions of the three approaches were very similar with only
small differences existing on the cowl side. However, the convergence of the FAC-ANG and FOC-ANG approaches
while nearly identical  to each other,  were not quite as  good as the NN-CCG approach. Additional  analysis of  the
HIFiRE 7 REST scramjet inlet results is ongoing.

In summary, the FAC-ANG and FOC-ANG approaches, which recover the F-ANG approach on tetrahedral
cells, have proven to be robust and to converge relatively well. Furthermore, the FAC-ANG and FOC-ANG approaches
have also been shown to: 1) produce wall heat flux results that are superior to the NN-CCG approach on a grid with
tetrahedral wall cells and as good as the NN-CCG approach on multiple grids containing hexahedral and/or prismatic
wall cells, 2) have WLSQ stencils that were 3 to 4 times smaller, in the mean, than the NN-CCG approach, and 3) have
a WLSQ gradient computational cost 2.4 to 14 times less than the NN-CCG WLSQ cost. Therefore, two of the three
potential advantages of the averaged nodal gradient approach discussed in the introduction have been substantiated.
However, the third potential advantage, reducing the amount of interpartition communication, could not be realized due
to the need to communicate gradients because of gradient limiters for all grid cell types and on hybrid grids where the
C-ANG approach requires data from nodes that reside on other partitions. 
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14

Fig. 10 Mach 6, 2-D, turbulent flat plate, tetrahedral grid, comparison of F-ANG and NN-CCG
 solutions using Mach number (color filled contours) and static pressure (black contour lines).

              Fig. 11 Mach 6, 2-D, turbulent flat plate,                  Fig. 12 Mach 6, 2-D, turbulent flat plate,
                           computed wall heat flux.                                                convergence behavior.

Fig 9 Mach 6 , 2-D, turbulent flat plate, 3-D tetrahedral cell grid details.
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Fig. 13 Mach 6.4 , 2-D, turbulent backward facing step, 2-D hexahedral and prismatic cell grid details.
Side view, XY symmetry plane
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Fig. 14 Mach 6.4, 2-D, turbulent backward facing step, 2-D hexahedral and prismatic cell grid, 
comparison of F-ANG and NN-CCG solutions using Mach number (color filled contours) and

 static pressure (black contour lines).
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              Fig. 15 Mach 6.4, 2-D, turbulent backward,              Fig. 16 Mach 6-4, 2-D, turbulent backward,
                   facing step, computed wall heat flux.                            facing step, convergence behavior.

Fig 17 Mach 8.0, 2-D turbulent blunt wedge, 3-D hexahedral, pyramidal,
 prismatic and tetrahedral cell grid details.
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Fig. 18 Mach 8.0, 2-D turbulent blunt wedge, 3-D hexahedral, pyramidal,
 prismatic and tetrahedral cell grid leading edge cutting plane grid details.

X

Y

Z

Fig. 19 Mach 8.0, 2-D turbulent blunt wedge flow solution using the FAC-ANG approach, 
view showing Mach contours on the symmetry, outflow and cutting planes,  and

log
10

(Static Pressure) contours on the no-slip wall surface.
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Fig. 20 Mach 8.0, 2-D turbulent blunt wedge flow solution using the FAC-ANG approach, 
detail view near the leading edge showing Mach contours on the cutting plane

 and log
10

(Static Pressure) contours on the no-slip wall surface.

              Fig. 21 Mach 8.0, 2-D turbulent blunt wedge,           Fig. 22  Mach 8.0, 2-D turbulent blunt wedge,
                              computed wall heat flux.                                               convergence behavior.
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Fig. 25 A comparison of the residual convergence behavior for the HIFiRE 7 REST 
scramjet engine inlet using the NN-CCG, FAC-ANG and FOC-ANG approaches.

19

Fig. 23 Schematic of HIFiRE 7 REST scramjet engine experimental model as installed in the University of
Queensland T4 Stalker Tube, at 0 degrees angle of attack relative to the combustor centerline, 

6 degrees angle-of-attack relative to the forebody plate surface (the labeled x-axis).

Fig. 24 HIFiRE 7 REST scramjet engine forebody/inlet symmetry plane computational Mach contours,
 with unstructured grid superimposed,  showing the contours obtained using the FAC-ANG approach.
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Fig. 27 A comparison of the computed HIFiRE 7 REST scramjet engine
 cowl wall center-line pressure distributions using the NN-CCG, FAC-ANG and

FOC-ANG approaches with experimental data from Ref. [27].

Fig. 26 A comparison of the computed HIFiRE 7 REST scramjet engine
 body wall center-line pressure distributions using the NN-CCG, FAC-ANG and

FOC-ANG approaches with experimental data from Ref. [12].
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Fig. 29 A comparison of the computed HIFiRE 7 REST scramjet engine 
cowl wall center-line heat flux distribution using the 

NN-CCG, FAC-ANG and FOC-ANG approaches.

Fig. 28 A comparison of the computed HIFiRE 7 REST scramjet engine 
body wall center-line heat flux distribution using the 

NN-CCG, FAC-ANG and FOC-ANG approaches.
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