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The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured
grids  using  a  spatially-elliptic,  2nd-order  accurate,  cell-centered,  finite-volume  method  has  been  recently
implemented in the VULCAN-CFD code. The construction of  cell-average gradients using a weighted linear
least-squares method and the use of these gradients in the construction of the inviscid fluxes is the focus of this
paper. A comparison of least-squares stencil construction methodologies is presented and approaches to augment
the number of cells participating in the stencil while preserving accuracy are explored. Due to our interest in
hypersonic flow, a robust multidimensional cell-average gradient limiter procedure that is consistent with the
stencil  used  to  construct  the  cell-average  gradients  is  described  and  investigated.  Canonical  problems  are
computed to illustrate the challenges and investigate the accuracy, robustness and convergence behavior of the
cell-average  gradient  methods  on  unstructured  cell-centered  finite-volume  grids.  Finally,  thermally  perfect,
chemically frozen, Mach 8 turbulent flow of air around a blunt wedge is computed to demonstrate the robustness
and convergence behavior of the new method for constructing stencils of use in a weighted linear least-squares
gradient method for a hypersonic flow. 

I. Introduction
The use of computational  fluid dynamics (CFD) to characterize the external  and internal  flows typical  of

hypersonic vehicles is extremely challenging due to the complex physical modeling required to compute these flows.
Nonetheless, over the past two decades, multiple CFD codes have been developed that are capable of computing these
types  of  flows  [1-4].  With  the  notable  exception  of  the  VULCAN-CFD  code,  the  codes  developed  have  almost
exclusively  employed  unstructured  grid  methodologies.  For  the  most  part,  these  unstructured-grid  codes  provide
significantly improved geometric flexibility at the expense of increased computational overhead, usually in the form of
an increase in the number of processors required, relative to structured-grid codes.  To address this additional overhead,
there has been a concerted effort by the CFD community at  large to develop unstructured grid codes that scale to
“many” thousands of processors so as to either enable computation of “Grand Challenge Problems” or to perform less
complex engineering analyses rapidly enough that they are relevant to engineering design time scales. Unfortunately,
most engineers still work in a computational environment having finite resources where many programs compete for
computational  access.  This  competition  naturally  creates  pressure  on  resource  managers  to  configure  their  batch
queuing software such that the time spent “in the queue” for jobs requiring “many thousands” of processors can become
untenable  from  an  engineering  design  point  of  view.  This  problem  is  further  exacerbated  in  restricted  access
computational environments because computational resources are usually severely limited by the nature of the work.
Moreover,  as the number of processors required to rapidly compute a single “design point” solution increases,  the
number  of  processors  available  to  compute  other  points  in  the  design  space  decreases  linearly,  thereby adversely
affecting the time required to cover the design space.

Historically,  the  development  strategy  for  the  VULCAN-CFD  code  has  been  to  develop  and  implement
solution methodologies that are efficient when computing the flows of interest to the scramjet community. This strategy
resulted in the development of a “multiregion” framework in VULCAN-CFD [5,6] wherein the user has the ability to
decompose the computational domain into multiple spatially-elliptic flow and/or parabolic/hyperbolic flow subdomains
or “regions” where the flow solution is computed using the algorithm most appropriate for the flow physics. To date,
this multiregion framework, has been instantiated by solving the spatially-elliptic flow regions with a structured-grid
implicit time marching scheme and the parabolic/hyperbolic flow regions with a structured-grid implicit space marching
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scheme. The issue of geometric complexity has been addressed via the use of multiblock curvilinear structured grids
within each region. However,  when geometric complexity becomes too extreme,  the time required to generate the
multiblock curvilinear structured grids can become prohibitive.  Therefore,  given the aforementioned computational
resource  constraints  and  the  maturation  of  unstructured-grid  flow  solution  technology,  the  incorporation  of  an
unstructured-grid spatially-elliptic flow solver capability into the VULCAN-CFD multiregion domain decomposition
framework was desirable. Consequently, an effort to accomplish this goal was initiated utilizing a code developed as
part of a hybrid structured/unstructured grid  NASA Research Award (NRA), funded by the Fundamental Aeronautics
Program as described by Spiegel et al. [7,8]. 

The cell-average and cell face gradient methods implemented by Spiegel et al. were based on the Green-Gauss
approach for the cell-average gradient and an edge normal augmented approach for the cell-face gradient. However,
these methods do not represent the current state of the art, consequently, the best cell-average gradient and cell face
gradient construction practices available in the literature for 2nd-order, cell-centered, finite-volume, unstructured-grid
flow solvers, were implemented. In addition, to improve convergence of the solver to steady state, the implicit scheme
was rewritten to improve the left hand side as compared to the approximations used by the original LU-SGS and matrix-
free SGS schemes and to couple the partitions during the linear solve subiterative process.  Furthermore, a novel y+
adaptive turbulent wall boundary condition approach was  also  developed  and  implemented. This  approach allows the
turbulent wall  boundary condition  algorithm to  choose  between using, a  solve-to-the-wall or a wall-matching-
function  wall  boundary  condition,  for  each  wall  cell  face  based  on  the  local ywall

+ . Finally,  all  thermodynamic,
chemical kinetic and turbulence models, as well as all relevant boundary conditions available in the structured-grid
solver, were implemented in the unstructured-grid solver. All of these modifications were recently described in detail in
[9].

The current work seeks to understand how the least-squares cell-average gradient stencil affects the stability
and robustness of the unstructured solver and to choose a stencil construction methodology that produces stencils that
are accurate, efficient and robust. Our previous effort [9] described the face neighbor (fn1) and the face neighbor of face
neighbors (fn2) least-squares stencils. In the current work, a node neighbor (nn) stencil is investigated and a new stencil
construction method (symF), designed to address the short comings of the fn2 and nn stencils, that selectively augments
the fn1 stencil with cells from the nn stencil is proposed using a stencil augmentation methodology described in [10]. In
addition, due to our emphasis on hypersonic flow applications, a robust multidimensional cell-average gradient limiter
procedure that is consistent with the stencil used to construct the cell-average gradients is described and investigated.
Canonical problems are computed to investigate the accuracy, efficiency, robustness and convergence behavior of the
cell-average gradient weighted linear least-squares stencil schemes. Finally, hypersonic turbulent flow over a backward
facing step, turbulent flat plate and a hypersonic inlet blunt leading edge are computed using the  fn2,  nn and  symF
stencil methods and compared. 

II. Methodology
A. Least-Squares Cell-Average Gradient Construction

Cell-average  gradients  are  perhaps  the  most  important  and  one  of  the  most  difficult  quantities  to  obtain
accurately and robustly on irregular, unstructured grids. The cell-average gradients are required to accomplish three
things when computing the residual of the discrete equations for each time step/cycle of the solution process: 1) to
perform the higher-order reconstruction when computing the inviscid fluxes, 2) to compute the cell-face gradient when
computing the viscous fluxes, and 3) to compute the source terms for the turbulence modeling transport equations.
Moreover, there is evidence in the literature that a different definition of the cell-average gradient may be required to
compute each of these quantities [11]. 

While no cell-average gradient method has been found to be accurate for all arbitrary polygons, with some
caveats [12], the weighted linear least-squares method has been found to be the preferred method when computing cell-
average gradients [12,13] for node-centered and cell-centered 2nd-order finite-volume schemes. Therefore, based on the
results in the literature [11-15], the Weighted least-squares (WLSQ) method was chosen in [9] to replace the Green-
Gauss method originally described in [7,8].  The WLSQ gradient method is based on a polynomial fit over a set of
nearby cells. For second-order finite-volume schemes, the gradients need to be at least first-order accurate on general
unstructured grids; and thus,  it is sufficient to fit a linear polynomial. Suppose we wish to compute the gradient of a
solution variable q at a cell i, and have a set {gi} of N(≥ 3) nearby cells (i.e., a gradient stencil) available for fitting the
linear polynomial:

                                                     q j=qi+∂ x qi (x j−x i)+∂ y qi (y j−y i)+∂ z qi (z j−z i)                                                     (1)

where j  ∈ {gi}, (xi,  yi, zi) and (xj,  yj, zj) denote the cell centroid coordinates of cell,  i, and the set of neighbor cells,  j,
respectively, ∂ xqi , ∂ yqi and ∂ z qi are  the  derivatives  we wish to  compute.  As the  number  of  cell  neighbors  often
exceeds three on 3-D unstructured grids, the polynomial fit (1) typically leads to an overdetermined problem:
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                                                                                            Ax = b,                                                                                   (2)

where

                            A=[ w 1(x1−x i)
⋮

w j(x j−xi)
⋮

wN (x N−xi)

w1( y1−y i)
⋮

w j ( y j− yi)
⋮

w N ( yN−y i)

w1(z1− z i)
⋮

w j (z j−z i)
⋮

wN (zN−z i)
] , x=[∂ x qi

∂ y qi

∂ z qi
] , b=[ w1(q1−qi)

⋮
w j(q j−qi)

⋮
wN (qN−qi )

] ,                           (3)

and wj is the weight applied to the equation corresponding to the neighbor cell j. The following inverse-distance weight 
is widely used in finite-volume methods:

                                                     w j=
1

d j
p (l ) , d j=√(x j−x i)

2+( y j−yi)
2+(z j−z i)

2 ,                                                   (4)

where p(l) is a parameter ranging from zero (unweighted LSQ) to one (fully weighted LSQ) and l =1, 2 or 3, where 1
refers to the parameter used for the WLSQ gradients used in the inviscid flux reconstruction, 2 refers to the parameter
used for the WLSQ gradients used in the construction of the cell face gradients for the viscous flux and 3 refers to the
parameter  used  for  the  WLSQ  gradients  used  in  the  construction  of  turbulence  model  source  terms.  The  over-
determined WLSQ system (2) can be solved in various ways.  We chose to use QR factorization via the Householder
transformation [16], which directly solves the overdetermined system as

                                                                                          x = R−1Qb,                                                                                (5)

where Q is the orthonormal matrix and R is the upper triangular matrix generated from A by the QR factorization. The 
solution can be expressed in the following form:

                                                                          [∂ x qi

∂ y qi

∂z qi
] = ∑

j∈ {g i}[cij
x

cij
y

cij
z ] (q j−qi) ,                                                              (6)

where cx
ij, cy

ij and cz
ij are the WLSQ coefficients to be computed and stored at all cells once for a given stationary grid.

From Eq. (6), it is clear that the cost of the gradient calculation is directly proportional to the number of neighbors
involved in the gradient stencil.

B. Least-Squares Stencils
1. The fn1, fn2 and nn stencils

In 3-D, the stencil of the linear least-squares average gradient operator must have at least 3 participating cells
to be well posed.  This condition can usually be met using the face neighbor stencil, ( fn1),   illustrated in the 2-D
example shown in Fig.  1.  However,  on highly skewed grids,  the   fn1 stencil  may become biased and give rise to
instabilities [13,14]. These instabilities  can be  alleviated  by augmenting  the  stencil to  reduce or  eliminate the bias
[13,14].

Fig. 1 The  fn1 stencil for computing the WLSQ cell-average gradient on a triangular grid.

Three augmentation approaches have been considered to address this difficulty. The first approach is to augment the  fn1
stencil cells with all of the cells that share a face with the cells of the  fn1 stencil, resulting in the face neighbors of face
neighbors stencil, (fn2), shown in Fig. 2. The second approach is to augment the  fn1 stencil with all the cells that share
a node with the nodes of cell i, resulting in the node neighbors stencil, (nn), shown in Fig. 2. However, as illustrated in
Fig. 2, the fn2 stencil can result in gaps in the stencil that do not exist in the nn stencil that could potentially cause an
instability when the grid is highly skewed [13,14].  Furthermore, Fig. 2 illustrates that, for 2-D  triangular grids, the fn2
stencil is a subset of the nn stencil, while the converse is true for  quadrilateral grids, i.e., the nn stencil is a subset of the
fn2 stencil.  Also  note  that  Fig.  3  illustrates  that  the  nn  stencil  is  more  spatially compact  than  the  fn2 stencil  for
quadrilateral grids, and by analogy, prismatic grids. In 3-D, the nn stencil of hexahedral and prismatic grids are not a
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subset of the fn2 stencil. Moreover, the  nn stencil of nonhexahedral grids also has the potential for there to be many
more cells  in  the  nn stencil  than in  the  fn2 stencil  thereby requiring significantly more storage and operations to
compute the gradient.

Fig. 2 The fn2 and nn stencils for computing the WLSQ cell-average gradient on a triangular grid.

Fig. 3 The fn2 and nn stencils for computing the WLSQ cell-average gradient on a quadrilateral grid.

It has been shown in [14,15] that the set of neighbors, {gj}, that define the WSLQ stencil, affects the stability
of finite-volume solvers. Ref. [14] formally shows that a finite-volume scheme can be unstable when using the face-
neighbor  gradient  stencil  on  tetrahedral  and  hybrid  grids,  and  that  adding  extra  cells  to  the  stencil  can  cure  the
instability. Ref. [15] shows that a larger stencil size usually leads to stability. Therefore, this suggests that the most
robust stencil should be the vertex stencil on triangular/tetrahedral grids and the union of nn and fn2 stencils on general
unstructured grids. However, due to their size, these stencils can noticeably increase the time and memory  required to
compute the solution to (6), especially in 3-D [17] as well as decreasing the accuracy of the gradients [10]. Recently,
Nishikawa [10] explored ways to construct a gradient stencil that achieves robustness and accuracy of the fn2 and nn
stencils  with a  smaller  stencil.  In  [10],  Nishikawa proposed  two augmentation methods  that  resulted  in  a  robust,
efficient and accurate stencil in 2-D. These methods were the symmetric augmentation of the fn1 stencil, (sym), and the
symmetric F-decreasing augmentation of the fn1 stencil, (symF). These stencils, were compared with the  fn1, fn2, and
nn stencils using a 2-D cell-centered finite-volume Euler solver on four unstructured grids. For a detailed discussion of
the test problems and the results obtained, please refer to [10].  The end result of the numerical experiments conducted
was that the symF stencil was the only stencil that allowed a solution to be obtained for all of the test problems.  In the
interest of brevity, a brief description of the sym and symF stencils follows.

2.Construction of the symmetric augmentation stencil, (sym)

In [10], the construction of the sym stencil, {gi}sym, begins with the cells defining the fn1 stencil, {gi}fn1 , shown in Fig. 1,
for cell i, and adds cells to it from the union of the nn and fn2 stencil neighbors {vi} that will symmetrize the stencil as
much as possible. The symmetric augmentation begins with one of the face neighbors, jfn1  ∈ {gi}fn1, and searches for a
cell, jsym  ∈ {vi}, located symmetrically opposed with respect to the centroid of the cell i as viewed from the centroid of
cell  jsym. This is repeated to form the set of jsym cells, {ji}sym, until the sym stencil, {gi}sym, is formed from the union of
{gi}fn1  and {ji}sym. As shown in Figs. 4 and 5, for triangles and quadrilaterals, respectively, this process is repeated for
each cell face neighbor cell until each face neighbor cell has a symmetrically opposed cell that is not a face neighbor.
Note that a  {ji}sym cannot also be a  member of {gi}fn1.

3.Construction of the symmetric F-decreasing augmentation stencil, (symF)

The symF stencil, {gi}symF, is constructed using an augmentation of the sym stencil based on the magnitude of
the gradient. As described in [10], this is accomplished by considering the normal equation:

                                                                                    AT Ax=ATb ,                                                                               (7)
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where

AT A=[ ∑
j∈ {gi }

w j
2Δ x j

2

∑
j∈ {gi }

w j
2Δ x jΔ y j

∑
j∈ {g i}

w j
2Δ x j Δ z j

∑
j ∈{g i}

w j
2Δ y jΔ x j

∑
j∈ {gi }

w j
2Δ y j

2

∑
j∈ {g i}

w j
2Δ y jΔ z j

∑
j ∈{gi }

w j
2Δ z jΔ x j

∑
j∈ {gi}

w j
2Δ z jΔ y j

∑
j∈ {gi}

w j
2Δ z j

2 ] ,

                                                                     x=[∂ x qi

∂ y qi

∂z qi
] , AT b=[∑j∈ {gi}

w j
2Δ x jΔq j

∑
j ∈{g i}

w j
2Δ y jΔq j

∑
j ∈{gi }

w j
2Δ z jΔ q j ] ,                                                                 (8)

and                                

                                             Δ x j=x j−xi , Δ y j= y j− yi , Δ z j=z j−zi , j=1, 2, 3, ⋯ , N.                                            (9)

Equation (7) is then scaled such that its right hand side is on the order of the typical variation of q over the stencil, i.e.,

O(Δqi), resulting in,

                                                                                     s−1 AT Ax=b̃ ,                                                                           (10)

where

                                                                 b̃=s−1 AT b ,  and s=∑
j ∈{gi }

w j
2 d j .                                                              (11)

In [10], it was shown that the magnitude of the gradient is bounded from below and that the lower bound is determined
by the measure F defined as 

                                                                                  F= s

∥AT A∥F

,                                                                            (12)

where ∥⋅∥F is  the Frobenius  norm. This  measure is  used to  select  cells  from  {vi} for  use in the stencil  if  their
inclusion decreases  F thereby decreasing the magnitude of the gradient. The algorithm employing the use of  F to
construct the symF stencil is as follows:

1. Construct the symmetric augmentation stencil.

2. Compute ATA and s, where {gi}= {gi}sym, and then compute F.

3. Let F0=F, (ATA)0= ATA, s0 =s, and the initial symF stencil,  symF0, is then sym stencil.

4. Let {vi
R} be a subset of cells in {vi } not in the symF0 stencil, and NR be the number of cells in {vi

R}.

5. If NR = 0, no further augmentation is possible, stop,  else,

6. for m=1 to NR , perform the following:

              (1) Compute ATA and s by adding the contributions of the m-th cell at (xm,ym,zm):

            AT A=( AT A)0+[ wm
2 Δ xm

2

wm
2 Δ xmΔ ym

wm
2 Δ xmΔ zm

wm
2 Δ ymΔ xm

wm
2 Δ ym

2

wm
2 Δ ymΔ zm

wm
2 Δ z mΔ xm

wm
2 Δ zmΔ ym

wm
2 Δ zm

2 ] , s=s0+wm
2 d m ,                       (13)
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where

Δ xm=xm−x i , Δ ym=ym−y i , Δ zm=z m−z i ,    

                                              d m=√Δ xm
2 +Δ ym

2+Δ zm
2 and w j=

1

d j
p(1 ) .                                                 (14)

                  (2) Compute F=s /∥AT A∥F .

              (3) If F < KFF0, where KF=0.85, add the m-th cell to {symFi} and set F0=F, (ATA)0= ATA and s0 =s.

In [10], the set {v j } was the union of the nn and fn2 stencils, and KF  was chosen to be 0.85 to only accept cells that
significantly reduce  the stencil  F. Some modifications to  the  algorithm were  made when extending it  to  3-D and
implementing it in VULCAN-CFD. These modifications were as follows:

1. Due to memory considerations, the current algorithm uses the nn stencil as the basis of {v j } for tetrahedral,
pyramidal and prismatic cells. This modification will have no effect on the stencils constructed for tetrahedral
cells because the fn2 stencil is a subset of the nn stencil. However, it will affect the construction of stencils for
prismatic and pyramidal cells. This remains an open area of research but testing to date has not shown this
modification to be a problem. 

2. Hexahedral cells are forced to use the  fn1 stencil. This restriction is based on an examination of the curved,
high aspect ratio hexahedral grid numerical experiments presented in [10] where it was shown that the   fn1
stencil had behavior similar to the symF stencil even when the fn2 and nn stencils failed.

          

Fig. 4 The sym stencil for computing the WLSQ cell-average gradient on a triangular grid.

Fig. 5 The sym stencil for computing the WLSQ cell-average gradient on a quadrilateral grid.

C. Inviscid Flux Cell Face State Variable Reconstruction
The inviscid fluxes in the unstructured-grid solver are computed using an upwind flux scheme. Currently,

either the LDFSS [18] or the HLLC scheme [19] can be selected. Both of these schemes require that the reconstruction
variables,  q,  be specified on the left  (L) and right (R) sides of the cell  face midpoint,  f,  as shown in Fig.  6.  The
reconstruction variables are defined as

                                                        q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v ,w , P , k ,ω)  for thermal equilibrium, or

                                                     q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v , w , T ve , P , k ,ω) for thermal nonequilibrium,
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where
ρ1
ρ ,…,

ρncs
ρ ,ρ ,u ,v ,w ,P ,T ve ,k ,ω are the chemical  species  mass  fractions,  from 1 to  the number of  species,

static  density,  Cartesian  velocity  components,  vibrational/electronic  Temperature,  static  pressure,  turbulent  kinetic
energy, and specific  turbulent dissipation rate, respectively. 

 Fig. 6 Higher-order reconstruction of the L and R states to the cell face midpoint. 

A 1st-order accurate scheme results when the cell-average values to the left,  i and right,  j of the cell face are used. A
higher-order accurate scheme results when the L and R primitive variables are reconstructed to the cell face midpoint
with an extrapolation or interpolation method based on the left and right cell-average primitive variables and gradients
as given by

                                                                             q f
L=qi+∇ qi ⋅ r⃗ if                                                                          (14)

                                                                           q f
R=q j+∇ q j ⋅ r⃗ jf .                                                                         (15)

where r⃗ if and r⃗ jf are the vectors shown in Fig. 6. In addition to the scheme above, which is an unstructured-grid
interpretation of Fromm's scheme [20], the higher-order variable extrapolation (or UMUSCL) reconstruction scheme
[21] was also implemented to control the dissipation of the scheme further. The UMUSCL scheme can be written as

                                                                         q f
L=qi+

χ
2
(q j−qi)+(1−χ)∇ qi ⋅ r⃗ if                                                              (16)

                                                                        q f
R=q j+

χ
2
(qi−q j)+(1−χ)∇ q j ⋅ r⃗ jf                                                             (17)

where χ is used to control the behavior and the 1-D order of accuracy of the scheme when the flow is smooth.
1. χ =    0,  gives Fromm's scheme
2. χ =   -1,  gives a 2nd-order fully upwind MUSCL-type scheme
3. χ = 1/3,  gives a 3rd-order upwind biased MUSCL-type scheme

D. Inviscid Flux Cell-Average Gradient Limiter Construction
When computing hypersonic flow, discontinuities will usually exist somewhere in the computational domain.

In the vicinity of these discontinuities, the higher-order reconstruction of the state variables to the cell face used to
achieve 2nd-order accuracy of the inviscid flux scheme will produce oscillations in the flow solution, and eventually
cause the computation to fail. These oscillations can be suppressed by locally forcing the reconstruction to be 1 st-order
through the use of some sort of gradient limiter. A gradient limiter can be implemented in two different ways for the
UMUSCL scheme; a 1-D “face”-based limiter approach or a multidimensional “stencil”-based limiter approach. A face-
based limiter for the UMUSCL scheme can be written as

                                                                        q̃ f
L=qi+χβ̃

L+(1−χ)α̃ L                                                                      (18)

                                                                        q̃ f
R=q j+χ β̃

R+(1−χ) α̃R                                                                      (19)

where the limited left and right gradients, α̃L , R and β̃L , R are

α̃L ,R=F (α L, R ,βL , R)(limiter) and β̃L , R=F (βL ,R ,α L ,R)(limiter ) ,

the unlimited left and right 1-D gradients αL ,R and βL , R are

                                                               αL=∇ qi ⋅ r⃗ if and βL=1
2
(q j−qi)                                                          (20)

                                                              αR=∇ q j ⋅ r⃗ jf and βR=1
2
(qi−q j)                                                          (21)
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and, in the case of the van Leer limiter [22]

                                                             F (Δ1 ,Δ2)( van Leer)=
(Δ2∣(Δ1)∣+Δ1∣(Δ2)∣)
(∣(Δ1)∣+∣(Δ2)∣+ϵ)

                                                                (22)

where ϵ is on the order of 1.0x10-12. While the face-based scheme has been found to be reasonably effective on smooth
hexahedral  grids,  its  effectiveness  deteriorates  on  truly  unstructured  grids.  Therefore,  two  stencil-based  limiter
approaches have been implemented. The first method is a generalization of the approach used to form stencil-based
gradient  limiters  by  Barth  and  Jesperson  [23]  and  later  by  Venkatakrishnan  [24].  The  second  method  is  the
multidimensional limiter process (MLP) of Park and Kim [25]. Both of these approaches are referred to as stencil-based
limiters herein because they use information from all of the cells that make up the stencil that was used to compute the
cell-average gradient. Figure 7 presents the cells involved in the fn2 stencils used to compute the limiter coefficients in
cells i and j, where the cells labeled i

s
 and j

s
 only participate in the i and j cell stencils, respectively, and cells labeled i

s
,j

s

are cells that participate in both cell stencils. These stencil-based limiter approaches compute cell-limiter coefficients
that are used to limit the higher-order reconstruction that, when applied to the UMUSCL higher-order reconstruction
scheme, results in equations for the left and right states having the form

                                                           q̃ f
L=qi+Φ i(qi) [

χ
2
(q j−qi)+(1−χ)∇ qi ⋅ r⃗ if ]                                                          (23)

                                                        q̃ f
R=q j+Φ j (q j)[

χ
2
(qi−q j)+(1−χ)∇ q j ⋅ r⃗ jf ]                                                  (24)

where Φ i(qi) and Φ j (q j) are the cell-limiter coefficients that are used to limit the reconstruction consistently for all
faces of the cells i  and j, respectively. Figure 8 presents the fn2 stencil cells  that participate  in the computation of  the
cell  i  limiter coefficient, Φ i(qi) . The methods of [23] and [24] compute  the cell limiter coefficients for each cell, i
using

                                Φi (qi
fn2)=min(1, {ϕ f (

qi
max( fn2)−qi

q f−qi

) , if (q f−qi)>0

ϕ f (
qi

min ( fn2)−qi

q f−qi

) , if (q f−qi)<0

1 if (q f−qi)=0

) , f =1→N i , faces ,                              (25)

where qi
max( fn2 ) and qi

min( fn2 ) are the maximum and minimum values of q of the fn2 stencil cells, respectively, and q f

is computed at each cell face midpoint by using the unlimited form of UMUSCL

Fig. 7 The cells that participate in the construction of the fn2 stencil-based limiter coefficients used to reconstruct
data to the face shared by cells i and j.

Fig. 8 The fn2 stencil cells and face midpoints that participate in the construction of the stencil-based limiter 
coefficients for cell i  where N 

i, faces
 = 3. 
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                                                               q f=qi+
χ
2
(q j−qi)+(1−χ)∇qi ⋅ r⃗ if                                                          (26)

where the value of χ is consistent with the value used in Eq. (15). The face-limiter coefficient, ϕ f , is computed using
a generalization of the form used in [23] and [24]

                                                                          ϕ f (
b
a
)=

F (a ,b )( limiter)

a
                                                                      (27)

where, F (a ,b)(limiter ) , can be any limiter function found in the literature.  For example, [23] used the minmod limiter
function whereas [24] used a modified form of the van Albada limiter function [26]. Currently VULCAN-CFD allows
the use of the Sweby [27], van Leer [22], van Albada [26], Venkatakrishnan [24], and Koren [27] limiter functions
consistent  with  the  structured-grid  solver.  However,  while  we have  found  that  this  stencil-based  limiter  approach
improves the shock capturing capability of the code significantly compared to the face-based limiter approach, some
oscillations can still occur in the vicinity of very strong shocks. These flows require further augmentation via a heuristic
pressure limiter such as proposed by Gnoffo [28]. 

Adding heuristic limiters, such as the aforementioned pressure limiter, has the potential to adversely affect the
flow solution by adding too much dissipation where it is not needed,  e.g., in shock boundary layer interaction flows
where the physical  viscosity should prevent oscillations from occurring such that  the pressure limiter is no longer
needed. Therefore, as mentioned previously, the multidimensional limiter procedure (MLP) of Park and Kim [25] has
also been implemented in an attempt to further improve the discontinuity capturing capability and robustness of the
unstructured-grid  solver  near  strong shocks,  while  reducing  limiting  and  thus  dissipation  in  the  vicinity of  shock
boundary layer interactions. The  MLP limiter is a stencil-based limiter that also attempts to “define and implement
monotinicity in multiple dimensions” by strictly enforcing the maximum principle at the corners of the cell. Park and
Kim state that the central premise of  MLP is to “control the distribution of both cell center and cell node physical
properties to mimic the multidimensional nature of the flow physics.” They state that this can be accomplished based on
the observation that a well controlled reconstruction of the cell-centered solution to the nodes can be used to construct a
limiting process that is both multidimensional and monotone. For a detailed discussion of the mathematical proof of this
concept, see [25]. 

The implementation of the  MLP approach proceeds in a manner similar to that of the previously described
stencil-based limiting approach with the key difference being that the construction of the cell limiter coefficient uses a
reconstruction of the solution to the cell nodes instead of to the cell face midpoints. Figure 9 illustrates the nn stencil
cells and nodes that participate in the computation of the cell i, MLP

nn
 “node-based” limiter coefficient, Φ i(qi

MLPnn).

Fig. 9 The nn stencil cells and nodes that participate in the construction of the MLP nn limiter coefficients for cell i
where N 

i, nodes
= 3.

This results in Eq. (25) being split into two equations

                                                       Φi (qi
MLP nn)=min(1,[Ψi , n

nn (qi , n) , n=1→ N i , nodes ])                                             (28)

and

                             [Ψi , n
nn (qi , n)={ϕi , n(

qi , n
max (ncn)−qi

qi , n−qi

) , if (qi , n−qi)>0

ϕ i , n(
qi , n

min (ncn)−qi

qi , n−qi

) , if (qi , n−qi)<0

1 if (qi , n−qi)=0

] ,                                            (29)
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where Φi (qi
MLPnn) , is computed in two steps: 1) the cell node limiter coefficient, Ψi , n

nn (qi , n) , is computed at each node,
n, that is a vertex of cell i, using Eq. (29), 2) the cell-limiter coefficient is computed as the minimum of those cell node
limiter coefficients using Eq. (28). In Eq. (29), the quantities, qi , n

max (ncn) and qi , n
min(ncn) are the maximum and minimum

values of the node cell-neighbor stencil, ncn, illustrated in Fig. 10, and qi , n is the  reconstruction of q to  each node, n,
of  cell, i,  based on an unlimited form of Fromm's scheme, i.e., 

                                                                          qi , n=qi+∇ qi ⋅ r⃗ i n                                                                        (30)

Fig. 10 The node cell-neighbor stencil of cells sharing the n=1 node used to compute q i , n
max (ncn)

and q i , n
min(ncn) .

1. where ϕ i , n , is computed at each node, n, of cell i,  by using Eq. (29), instead of at each face midpoint, f, of

cell i. However, since the cell limiter coefficient, Φ i(qi
MLPnn) , was derived for use with the nn stencil, it must

be modified for use with a general stencil {gj} that is a subset of the nn stencil, such as the fn2 or the symF
stencils, Φ i(qi

MLP{g j}) , as illustrated in Fig. 11,

Fig. 11 The fn2 stencil cells and nodes that participate in the construction of the Φ i(qi
MLP {g j}) , cell-limiter 

coefficients for the cell i where N 
i, nodes

 = 3.

where the terms qi , n
max(ncn) and qi , n

min(ncn) of Eq. (29) have been replaced with qi
max({g j }) and qi

min({g j}) , respectively, to 
yield

                                                    Φi (qi
MLP {g j })=min(1,[Ψi , n

{g j }(qi , n) , n=1→N i , nodes ])                                               (31)

and

                               [Ψi , n
{g j}(qi , n)={ϕi , n(

qi
max({g j })−qi

qi , n−qi

) , if (qi , n−qi)>0

ϕ i , n(
qi

min ({g j })−qi

qi , n−qi

) , if (qi , n−qi)<0

1 if (qi , n−qi)=0

] .                                               (32)

The  resulting  gradient  limiter  approach  of  Eq.s  (31-32), Φi (qi
MLP{g j}) while  not  a  strict  implementation  of  the

Φ i(qi
MLPnn) limiter described in Eq.s (28-30),  has been found to be much more robust than the face-based limiter

originally implemented and less dissipative then the heuristic pressure limiter augmented stencil-based limiter approach
of Eq.s (25-27). In addition, we have replaced the Venkatakrishnan limiter with the MLP-u2 limiter of [25]. The MLP-
u2 limiter is a modified form of Venkatakrishnan's limiter. Venkatakrishnan's limiter has the form 
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                                                                  ϕ i , n(
Δ2

Δ1
)= 1

Δ1 [ (Δ2
2+ϵ2)Δ1+2Δ1

2Δ2

Δ2
2+2Δ1

2+Δ1Δ2+ϵ
2 ]                                                            (33)

where                                     

                                                     Δ1=qi
min or max−qi , Δ2=∇ qi ⋅r⃗ in and ϵ2=(K L∣r⃗ i n∣)

3                                            (34)

where KL is a O(1) user definable constant that should be “tuned” for each computation. Park and Kim construct the
MLP-u2 limiter by retaining Venkatakrishnan's limiter function and redefining ϵ2 to be

                         ϵ2=
K1

1+θ
Δqi , n

2 where Δqi , n=qi , n
max−qi , n

min , θ=
Δ qi , n

K2∣r⃗ in∣
K 3

and K 1=5, K 2=5, K3=1.5.                     (35)

We have found this limiter to be robust, well behaved and relatively insensitive to the K
1
, K

2
, and K

3
 parameters. A final

limiter modification that has also been found to improve robustness when computing complex hypersonic flows using
the  fn2,  nn or the symF stencil  is  to compute the  MLP limiter coefficient  as the minimum of the pressure limiter
coefficient and each of the primitive variable limiter coefficients, i.e.,

                                                            Φi (qi
MLP {g j })=min [Φ i(P i

MLP {g j }) ,Φi(qi
MLP{ g j})]                                                      (36)

E. Viscous Flux Cell Face Gradient Construction
The computation of the viscous flux requires that the cell-face average and the cell-face average gradient of the

primitive variables , ∇ q f , be computed, where the primitive variables are, 

                                               q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v ,w ,T , k ,ω)  for thermal equilibrium, or

                                                           q = (
ρ1
ρ ,… ,

ρncs
ρ ,ρ , u , v ,w , T ve ,T , k ,ω) for thermal nonequilibrium   

where  T and  Tve are  the  static  temperature  and  vibrational/electronic  temperature,  respectively.  Hasselbacher  [30]
observed that computing ∇ q f as a simple average of the face neighbor cell-average gradients, i.e.,

                                                                               ∇ q f=
(∇ qi+∇ q j)

2
                                                                   (37)

leads  to  odd-even  decoupling causing  him to  introduce  face-derivative  augmentation.  Hasselbacher  suggested  two
methods to accomplish this augmentation: the so-called, edge-normal (EN) and face-tangent (FT) cell-face gradient
methods.  More  recently, Nishikawa  [31]  proposed  a  new approach  to  deriving  a  scheme for  a  second-derivative
diffusion term, where a diffusion scheme is derived from an advection scheme applied to a hyperbolic diffusion model.
As  demonstrated  in  Ref.  [31],  the  use  of  the  hyperbolic  model  leads  to  robust  diffusion  schemes  for  various
discretization  methods,  including  finite-volume  and  finite-element  methods.  The  resulting  finite-volume  diffusion
scheme has a consistent approximation term and an adjustable high-frequency damping term with a coefficient alpha,
and thus is often called the alpha-damping diffusion scheme. It is a generalized finite-volume diffusion scheme that
includes the edge-normal and face-tangent methods as special cases.  The edge-normal augmented cell-face gradient
method is the method originally implemented in the NRA-supplied code.  However, when the edge-normal and face-
tangent augmented cell-face gradient methods were studied in [11,31,32], the face-tangent method was found to be
preferable to the edge-normal method. Moreover, in [11], the observation was made that, in many cases, a converged
solution could only be obtained when the face-tangent augmented face-gradient method was used. However, insight can
be  gained  by  comparing  the  edge-normal,  face-tangent  and  hyperbolic-reconstruction  cell-face  gradient  methods.
Therefore, for the sake of completeness, the edge-normal method is also described. The edge-normal augmented cell-
face gradient method, as defined by Hasselbacher, is
 

                                                             ∇̂ q f
EN=∇ q f −[∇ q f ⋅ ê ij −

(q j−qi)
∣⃗e ij∣

] êij                                                 (38)

where, referring to Fig. 1, e⃗ij is a vector drawn from cell-center i to cell-center j and ê ij is its unit vector. The face-
tangent  augmented cell-face gradient method, as defined by Hasselbacher, is
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                                                        ∇̂ q f
FT=∇ q f −[∇ q f ⋅ ê ij −

(q j−qi)
∣⃗e ij∣

](
n̂ f

n̂ f ⋅ êij

).                                          (39)

As mentioned above, Nishikawa considered the augmentation terms (the bracketed terms in Eq. (38) and (39) to be
damping terms, and further observed that the face-tangent method damping term leads to a more robust scheme on
highly skewed meshes due to the dependence on 1 /(n̂ f ⋅ êij ). The increased robustness results from the fact that as
skewness  increases, n̂ f ⋅ ê ij decreases,  thereby  increasing damping.  When Nishikawa's  hyperbolic  diffusion-based
approach is  applied to  a  cell-centered,  finite-volume scheme,  it  results  in  a  reconstruction-based cell-face average
gradient, ∇̂ q f

HR , that includes a damping term that arises naturally due to an upwind method being used to discretize
the construction of the cell-face average gradient.  This reconstruction based cell-face average gradient method, i.e., the
alpha-damping scheme, has the form:
 

                                                          ∇̂ q f
HR=∇ q f + α(

n̂ f

∣⃗e ij ⋅ n̂ f∣
) (q f

R−q f
L)                                                      (40)

where α is a damping coefficient and q f
L and q f

R are the left and right higher-order-reconstructed viscous face
state variables. These state variables are reconstructed using Fromm's scheme where

                                                                         q f
L=qi+∇ qi ⋅ r⃗ if                                                                      (41)

                                                                       q f
R=q j+∇ qi ⋅ r⃗ jf .                                                                     (42)

The first term in Eq. (40) is the consistent term approximating the face gradient, and the second term is the adjustable
damping term. Ref. [31] shows that α=4 /3 leads to fourth-order accuracy on regular quadrilateral grids. Observe that
the alpha-damping scheme reduces to the  FT method if the reconstruction is performed halfway between the two
centroids across the face (not necessarily on the face); and the absolute sign is removed from the skewness measure in
the denominator. Recently, Jalai et al. [32] analyzed the stability and accuracy of nine cell-centered, finite-volume, cell-
face gradient methods and reported that Nishikawa's scheme, with α=4 /3 , was the preferred scheme for computing
the cell-face gradient, based on stability and accuracy analyses.

III. Verification
A 2nd-order accurate cell-centered scheme requires derivatives that are 1st-order accurate. Therefore, we seek to

verify the relative accuracy and order of accuracy of the linear least-squares cell gradient operator for each of the
candidate stencils, fn2, nn and, symF. For completeness, we also verify the relative accuracy and order of accuracy of
the linear least-squares cell gradient operator for the fn1 stencil. These experiments were accomplished through the use
of a 2-D cell-centered code developed to compute the cell-average gradient of a variable u(x,y) using a weighted linear
least-squares method with a weighting parameter, p(l), of 0.25, on severely perturbed triangle- and quadrilateral-based
unstructured grids around a 2-D cylinder for the function

                                                                 u(x , y) = sin (0.1r )+0.5sin (θ).                                                               (43)

The baseline triangle and quadrilateral perturbed grids, shown in Fig. 12a and Fig. 13a, respectively, were
created by perturbing the nodes of a regular grid, and, in the case of the triangle based grid, swapping the edges. Close
up views of the grids near the inner boundary, presented in Figs. 12b and 13b, illustrate the level of distortion achieved.
Four finer grids were then generated by repeating the perturbation process on grids that were refinements of the baseline
grid. Equation (43) was then used to compute u at each cell center. The linear least-squares cell-average gradient was
then computed for each cell of the grid using the  fn1, fn2, nn and symF stencils and the gradient error was computed as
the difference between the analytical value and the linear least-squares value. Figures 14 and 15 present the gradient L1
error as a function of the effective cell size for each of the stencil types for the interior cells, i.e., cells that do not have a
face on a boundary. Figure 14 demonstrates that all stencils types produce linear least-squares cell-average gradients
that are 1st-order accurate and have similar relative error on the triangle-based grid. Figure 15a demonstrates that all
stencil types  produce linear least-squares gradients that are 1st-order accurate. Fig. 15b shows that, on a quadrilateral
grid, that the  fn1 and  nn,  and fn2  have similar accuracy as the grid is refined. Figure 15b also shows that the  symF
stencil is slightly less accurate than the fn1, fn2, and nn stencils. 

Stencil size statistics for the fn1,  fn2, nn and symF interior cell stencils for the triangle-based grid shown in
Fig. 12 are presented in Fig. 16a. Based on the definitions of the fn1 and fn2 stencils shown in Fig. 1 and 2, as expected,
Fig. 16a  indicates the fn1 stencil has a minimum, maximum and mean stencil size of 3 for all grids. Figure 16a also
shows that the  fn2 stencil has a minimum stencil size of 6, a maximum stencil size of 9 and a mean stencil size of
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essentially 8 for all  grids.  The minimum  fn2 stencil  size is  6 due to a lack of ghost  cells on the boundaries.  It  is
important to note, that the size of these face-neighbor-based stencils are driven by the cell topology and as such when
the cell topology is constant, the cell stencil statistics will be constant. In other words, as shown in Figs. 2 and 3, a grid
made up of cells having 3 faces will have a fn1 stencil size of 3 and an fn2 stencil of 9 and a grid made up of cells
having 4 faces will have a fn1 stencil size of 4 and a fn2 stencil of 12. However, Fig. 16a also reveals that the nn stencil
has a minimum stencil size of 6, a maximum stencil size of 24-28, and a mean stencil size of 12-14. It is very important
to note that the increase in nn stencil size is due to the size of this type of stencil being driven by node connectivity
instead  of  cell  topology.  Moreover,  since  node  connectivity  is  only  a  constant  for  structured  grids  or  regular
unstructured grids, the nn stencil size will vary spatially as a function of the node connectivity for all but the simplest
unstructured grids. As shown in Fig. 2, for a 2-D unstructured triangle-based grid, the nn stencil will always be bigger
than the fn2 stencil. Figure 2 also shows that for this particular hypothetical grid, the fn2 stencil has 9 members and the
nn stencil has 12 members. Moreover, as illustrated in Fig. 16a, the nn stencil can be significantly bigger then the fn2
stencil where the grid connectivity is irregular/complex. However, Fig. 16a shows that the symF stencil has a minimum
size of 4, a maximum size of 9 and a mean size of 6. Therefore, in 2-D on this particular grid, the  symF stencil is
approximately the same size as the fn2 stencil and nearly a factor of 3 smaller than the nn stencil. Therefore, in 3-D,
where tetrahedral, prismatic and pyramidal cells will also have a nn stencil size that is determined by node connectivity,
the  fn1 and  fn2 stencils  will  be,  and  the  symF stencil  should  be,  significantly smaller  than  the  nn stencil.  These
observations have important implications with regard to stencil size behavior on general unstructured grids, especially
in 3-D, where stencils sizes in excess of 100 cells have been observed. This is why it is preferable to use the fn1, fn2 or
symF stencils over the nn stencil for a general unstructured grid.

Stencil size statistics for the fn1, fn2, nn and symF interior cell stencils for the quadrilateral-based grid shown
in Fig. 13 are presented in Fig. 16b. Consistent with the fn1, fn2 and nn stencil definitions shown in Fig. 3, the fn1, fn2
stencil and nn maximum stencil sizes shown in Fig. 16b are 4, 8 and 12, respectively. The minimum and mean stencil
sizes are different from the maximum size due to a lack of boundary ghost cells. The extension of the 2-D definition of
the fn1, fn2 and nn stencils to 3-D results in their stencils being 8, 24 and 26 cells, respectively. Figure 16b also shows
that the maximum symF stencil size was 8, which is the same as the maximum of the nn stencil. This means that the
augmentation process used in the  symF stencil construction “recovered” the  nn stencil for some of the cells in the
quadrilateral grid. It should be noted that for quadrilateral and hexahedral cells the  fn1,  fn2,  nn and  symF maximum
stencil size are determined by cell topology, not node connectivity, and are therefore always bounded. 

The end result of these observations regarding stencil size and accuracy on 2-D grids and the extension to 3-D
is that, due to accuracy and cost, we always want to use the smallest possible stencil that is stable.  Moreover, the fn1,
fn2, and symF stencils are preferable from a parallel processing point of view because they have less stencil variability
thereby making the cost of the least-squares more homogeneous across the processors. This would naturally lead one to
decide to use the fn1 stencil wherever possible. However, it has also been observed that:

1. For tetrahedral cells, the fn1 stencil must be augmented in some manner [13,14,15]. 
2. For triangular grids, the symF stencil was the only stencil that was stable for all the numerical tests performed

in [10].
3. For quadrilateral cells, the fn2 and nn  stencils can be unstable on high aspect ratio highly curved grids and the

fn1 and symF  stencils were the only stencils that were stable for all the numerical tests performed in [10].
4. For distorted quadrilateral cells, the symF stencil is less accurate than the fn1 stencil, as shown in Fig. 15.

Therefore,  we  propose  the  following strategy for  the  construction  of  stencils  for  a  general  3-D grid  made up  of
tetrahedral, pyramidal, prismatic and hexahedral cells:

1. Use the modified symF stencil proposed in section II.B.2 for tetrahedral cells due to its robustness, cost and
accuracy.

2. Use the modified symF stencil proposed in section II.B.2 for prismatic and pyramidal cells due to its cost. 
3. Use the fn1 stencil for hexahedral cells due to its simplicity, robustness, cost and accuracy.

In  the  following  section,  numerical  experiments  will  be  conducted  to  examine  the  proposed  stencil
construction strategy utilizing three hypersonic turbulent flow canonical problems:

1. 2-D hypersonic turbulent flow of air over a backward facing step using a 2-D grid made up of prismatic and
hexahedral cells.

2. 2-D hypersonic turbulent flow of air over a flat plate using a 3-D grid made up of pyramidal, prismatic and
tetrahedral cells.
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3. 2-D hypersonic turbulent flow of air over a blunt wedge using a 3-D grid made up of tetrahedral, pyramidal,
prismatic  and hexahedral cells.

The convergence behavior, relative cost, skin friction and heat transfer of the proposed stencil construction method will
by compared to results obtained using the fn2 and nn stencils on the same grid.

a) Overall view                                                                   b) Close up view
Fig. 12 A very bad triangle-based unstructured grid for the verification of the accuracy of interior weighted
linear least-squares cell-average gradients using the fn1, fn2, nn and symF stencils.

a) Overall view                                                                   b) Close up view
Fig. 13 A very bad quadrilateral-based unstructured grid for the verification of the accuracy of interior weighted
linear least-squares cell-average gradients using the fn1, fn2, nn and symF stencils.

14

D
ow

nl
oa

de
d 

by
 N

A
SA

 L
A

N
G

L
E

Y
 R

E
SE

A
R

C
H

 C
E

N
T

R
E

 o
n 

Ja
nu

ar
y 

28
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
01

27
 



a) ∂u/∂ x                                                                         b) ∂u/∂ y
Fig. 14 The accuracy of the interior weighted linear least-squares cell-average gradients using the fn1, fn2, nn 
and symF stencils on the triangle-based unstructured grid.

a) ∂u/∂ x                                                                         b) ∂u/∂ y
Fig. 15 The accuracy of the interior weighted linear least-squares cell-average gradients using the fn1, fn2, nn 
and symF stencils on the quadrilateral-based unstructured grid.

a) Triangle-based grid                                                b) Quadrilateral-based grid
Fig. 16 Stencil size statistics of the  fn1, fn2, nn and symF interior cell stencils on the triangle- and quadrilateral-
based grids.
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IV. Numerical Results and Discussion

A. Hypersonic Turbulent Flow Over a 2-D Backward Facing Step Using Prismatic and Hexahedral Cells.
The first numerical experiment was conducted by computing hypersonic calorically perfect, chemically frozen,

turbulent flow of air over a 2-D backward facing step with freestream conditions of, Mach 6.356, static pressure, P
ref

=

50,662.58 Pascals,  static  temperature,  T
ref

= 1297.75 Kelvin,  ratio  of  specific  heats, γref = 1.4,  and  unit  Reynolds

number,  Re
ref

= 1.2891x107/m,  with the wall treated as isothermal (1172.6 Kelvin), using a turbulent wall matching

boundary condition [34].  The Wilcox  (2006) k−ω two-equation turbulence model  [35]  was  used  to  compute  the
Reynolds  stresses  and  Reynolds  heat  flux  (Pr

t
=0.9)   and the turbulence model  production term was based  on the

magnitude of the vorticity. The cell-average gradients were computed using weighted linear least-squares with the fn1,
fn2, nn, and symF stencils. The inviscid fluxes were computed using the HLLC scheme with the higher-order cell-face
states  constructed using UMUSCL, κ=1 /3, with the cell-average  gradients  limited using the Φi (qi

MLP{g j}) gradient
limiter and the Park and Kim MLP-u2 limiter function. The viscous fluxes were computed using the Nishikawa cell face
gradient method. The governing equations were solved implicitly using the Symmetric Gauss-Seidel (SGS) scheme
described in [9], with local time stepping and the CFL number linearly varied from 0.1 to 250 over time steps 1 to 500.
Convergence was achieved by “freezing” the gradient limiter after 15000 time steps to prevent convergence stalling due
to limiter “ringing”. The computations were stopped when the residual L

2
 norm had dropped 6 orders of magnitude

from its initial value. The 2-D geometry was discretized to form a 3-D computational domain using the Pointwise ®

unstructured grid generator. The resulting grid consisted of triangular and quadrilateral 2-D cells, as shown in Fig. 17,
extruded in the Z-direction to form a 3-D grid of 15,781 prismatic and 8,168 hexahedral cells for a total of 23,949 cells.
The boundary conditions were:  1) reflection of  all  variables  at  the min. and max. Z-direction boundary cell  faces
(Symmetry Boundary), 2) specification of all variables on the min. X-direction boundary cell faces (Inflow Boundary),
3) 1st-order extrapolation of all variables at the max. X and Y-direction boundary cell faces (Outflow Boundary) and 4)
isothermal no-slip wall-matching construction of all variables on the min. Y-direction wall boundary cell faces (No-slip
Isothermal  Wall).  The computations were performed using parallel  processing on 6 partitions.  A computation was
performed using each stencil type with all other input parameters being unchanged. For each computation, the stencil
statistics, convergence behavior, contour plots of the flow solution and the X distribution of wall heat transfer were
extracted and used to compare the fn1, fn2, nn and symF stencils.

Table 1 presents  the stencil  statistics,  i.e.,  the min.,  max.,  and mean stencil  sizes  as  well  as the standard
deviation, σ, of the stencil size and the relative augmentation cost. This grid, due to its quasi 2-D nature, and due to it
consisting of hexahedral and prismatic cells, has statistics such that the min. stencil size has been determined by the
topology of the hexahedral cells and the max. stencil size has been determined by the connectivity of the prismatic cells.
The min. stencil size of all 3 stencil types are smaller than expected based on a 3-D extension of Fig. 3 for a hexahedral
cell  due to a boundary effect.  This effect  is  caused by the exclusion of all  boundary ghost  cells  from the no-slip
boundary adjacent hexahedral cell stencils. The key point of Table 1 is that the symF stencil is both smaller and varies
less over the computational domain than the fn2 and nn stencils by a significant amount. The relative augmentation cost
was computed using the equation (Acost -fn1cost )/(fn2cost-fn1cost), where Acost is the cost of a residual evaluation using the
fn2, nn or symf stencil to compute the gradients and fn1cost is the cost of a residual evaluation using the fn1 stencil. Using
this  metric  the  symF stencil  can  be  seen  to  be  5.3  and  10.7  times  less  expensive  than  the  fn2 and  nn stencils,
respectively.

Table 1 Stencil statistics and relative cost of the fn2, nn and symF stencils for the backward facing step grid. 

Stencil
Augmentation 

Method

Minimum (min.)
Stencil

Size

Mean
Stencil

Size

Maximum (max.)
Stencil

Size

Stencil
Standard

Deviation (σ)

Relative
Augmentation

Cost 

fn2 13 18.6 23 2.39 1

nn 13 33.8 53 6.24 2.04

symF 5 8.75 12 2.04 0.19

Figure 18 presents a contour plot of Mach no. (filled) contours and the static pressure (black lines) contours
using the fn2 stencil and is typical of the result obtained using all three stencil types. The flow solution can be seen to be
nearly oscillation free with the incident shock caused by the reattachment of the separation bubble being captured
without apparent difficulty. Figure 19 presents a comparison of the convergence history of the reduction of the L2 norm
of the residual for the computations performed using the fn1, fn2, nn and symF stencils, showing that the four stencils
gave very similar convergence behavior with the fn2 stencil convergence being slightly better than the other stencils.
Figure 20 presents a comparison of the wall heat flux versus X and shows that the maximum difference in heat transfer
between stencil types was approximately 3% at the X location where the incident shock caused by the reattachment of
the separation bubble initiates. 
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Fig. 17 Computational grid and boundary conditions for hypersonic flow over a 2-D backward facing step.

Fig. 18 Mach No. and static pressure contour plot of hypersonic flow over a 2-D backward facing step using the
fn2 stencil.
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Fig. 19 A comparison of the residual convergence behavior for the computation of hypersonic flow over a 2-D
backward facing step using the fn1, fn2, nn, and symF stencils.

Fig. 20 A comparison of the axial distribution of wall heat transfer for the computation of hypersonic flow over a
2-D backward facing step using the fn1, fn2, nn, and symF stencils.
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B. Hypersonic Turbulent Flow Over a 2-D Flat Plate Using a Grid Containing Tetrahedral, Pyramidal and Hexahedral Cells.
The second numerical  experiment  was  conducted  by computing  hypersonic  thermally prefect,  chemically

frozen, turbulent flow of air over a 2-D flat plate with freestream conditions of, Mach 6, static pressure,  P
ref

= 2100.0

Pascals, static temperature, T
ref

= 63.01 Kelvin, and unit Reynolds number, Re
ref

= 2.64x107/m, with the wall treated as an

isothermal (335.83 Kelvin), no-slip, solve-to-the-wall boundary condition. The governing equations were solved in a
fully coupled manner, with local time stepping and the CFL number linearly varied from 0.1 to 250 over time steps 1 to
500. The Wilcox (1998) k−ω two-equation turbulence model [36] was used to compute the Reynolds stresses and
Reynolds heat flux (Pr

t
=0.9), and the turbulence model production term was based on the  magnitude of the vorticity.

The cell-average gradients were computed using weighted linear least-squares with the fn1, fn2, nn and symF stencils.
The inviscid fluxes were computed using the LDFSS scheme with the higher-order cell-face states constructed using
UMUSCL, κ=0, with  the  cell-average  gradients  limited  using  the Φi (qi

MLP{g j}) gradient  limiter  and  the  van  Leer
function. The viscous fluxes were computed using the Nishikawa cell-face gradient method. Convergence was achieved
by “freezing” the gradient limiter after 200 time steps   to prevent convergence stalling due to limiter “ringing”. The
computations were stopped when the residual L

2
 norm had dropped 6 orders of magnitude. The 2-D geometry was

discretized to form a 3-D computational domain using the Pointwise® unstructured grid generator. The resulting grid
consisted  of  quadrilaterals  on  the  surface  of  the  plate  that  were  extruded  in  the  Y-direction  to  form a  layer  of
hexahedrals in the near wall that transitioned into tetrahedral cells via a layer of pryamidal cells to form a 3-D grid of
98,928 hexahedral, 9,160 pyramidal and 65,085 tetrahedral cells for a total of 173,173 cells as shown in Fig. 21. The
boundary  conditions  were:  1)  reflection  of  all  variables  at  the  min.  and  max.  Z-direction  boundary  cell  faces
(Symmetry), 2) specification of all variables on the min. X-direction boundary cell faces (Inflow Boundary), 3) 1 st-order
extrapolation of all variables at the max. X- and Y-direction boundary cell faces (Outflow Boundary) and 4) isothermal
no-slip solve-to-the-wall on the min. Z-direction wall boundary cell faces (No-slip Isothermal Wall). The computations
were performed using parallel processing on 6 partitions. A computation was performed using each stencil type with all
other input parameters being unchanged. For each computation, the stencil statistics, convergence behavior, contour
plots of the flow solution and the X distribution of wall heat transfer were extracted and used to compare the fn1, fn2,
nn and symF stencils.

Table 2 presents the stencil statistics and the relative augmentation cost. This grid, due to its 3-D nature, and
due to it consisting of hexahedral, pyramidal and tetrahedral cells has statistics such that the min. stencil size has been
determined by the topology of the hexahedral cells and the max. stencil size has been determined by the connectivity of
the tetrahedral cells. The min. stencil size of all 3 stencil types are similar to the 3-D extension of the stencils illustrated
in Fig.  3 for a hexahedral  cell.  In  this case,  unlike the previous computations that  used the wall matching no-slip
boundary condition, the solve-to-the-wall no-slip boundary condition allows the inclusion of ghost cells in the no-slip
boundary adjacent hexahedral cell stencils. Once again, the key point of Table 2 is that the symF stencil is both smaller
and varies less over the computational domain than the  fn2 and  nn stencils by a significant amount and the relative
augmentation cost metric indicates that the  symF stencil was 3.5 and 6.3 times less expensive than the  fn2 and  nn
stencils, respectively.

Table 2 Stencil statistics and relative cost for the fn2, nn and symF stencils for the flat plate grid.

Stencil
Augmentation 

Type

Minimum (min,)
Stencil

Size

Mean
Stencil

Size

Maximum (max.)
Stencil

Size

Stencil
Standard

Deviation (σ)

Relative
Augmentation

Cost 

fn2 9 19.8 27 4.52 1

nn 19 42.6 107 20.3 1.82

symF 6 9.41 21 4.07 0.29

Figure 22 presents  a  contour plot  of Mach no. contours using the  nn stencil  and is typical  of the results
obtained using all three stencil types. The flow solution can be seen to be nearly oscillation free with the weak leading
edge shock caused by the rapid growth in the displacement thickness during the initial boundary layer formation being
preserved even in the tetrahedral cell part of the grid. Figure 23 presents a comparison of the convergence history of the
reduction of the L2 norm of the residual for the  fn1,  fn2,  nn and  symF computations showing that the stencils gave
nearly identical convergence behavior. Figure 24 presents a comparison of the wall heat flux versus X and shows that
all stencil methods produced very similar results and that the maximum difference in heat transfer between stencil types
was approximately 1.44% at the trailing edge of the plate. 
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Fig. 21 Computational grid and boundary conditions for hypersonic flow over a flat plate.

Fig. 22 Mach no. contour plot of hypersonic flow over a 2-D backward facing step using the nn stencil.
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Fig. 23 A comparison of the residual convergence behavior for the computation of hypersonic flow over a 2-D flat
plate using the fn1, fn2, nn, and symF stencils.

Fig. 24 A comparison of the axial distribution of wall heat transfer for the computation of hypersonic flow over a
2-D flat plate using the fn1, fn2, nn, and symF stencils.
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C. Hypersonic 2-D Turbulent Flow Over a 2-D Blunt Wedge Using a Grid Containing Tetrahedral, Pyramidal, Prismatic and
Hexahedral Cells.

The third numerical experiment was conducted by computing hypersonic, thermally prefect, chemically frozen,
turbulent flow  over a blunt wedge representing a scramjet flowpath forebody or cowl leading  edge (this particular
geometry uses the same diameter as the REST inlet cowl presented in [37]). The freestream conditions were:

 
P

ref
=

1675.0 Pascals, T
ref

= 226.7 Kelvin,
 
and Mach number, M

ref
= 8. A thermally perfect air gas mixture was used to simulate

the test gas, which at the given  conditions yields a unit Reynolds number of Re
ref

= 2.9467x106/m. The wall surface was

treated as a no-slip, isothermal (300.0 Kelvin) wall, using a turbulent wall matching boundary condition. The Menter
Baseline  two-equation turbulence  model  [38]  was  used  to  compute  the  Reynolds  stresses  and  Reynolds  heat  flux
(Pr

t
=0.9), and the turbulence model production term was based on the  magnitude of the vorticity. The inviscid fluxes

were computed using the LDFSS scheme with the higher-order cell-face states  reconstructed using the UMUSCL,
κ=0, scheme with the cell-average gradients limited using the Φi (qi

MLP{g j}) gradient limiter and the van Leer function.
The viscous fluxes were computed using the Nishikawa cell-face gradient  method.  Convergence  was achieved  by
“freezing” the gradient  limiter  after  2000 time steps  to  prevent  convergence stalling due to  limiter  “ringing”.  The
governing equations were solved implicitly using the SGS scheme,  with local  time stepping and the CFL number
linearly varied from 0.1 to 10 over time steps 1 to 1000. The computations were stopped when the residual L

2
 norm had

dropped 6 orders of magnitude relative to its initial value. The blunt wedge geometry was discretized to form a 3-D
computational domain using the Pointwise® unstructured grid generator. The resulting grid consisted of quadrilaterals
on the surface of the wedge that were extruded normal to the surface to form layers of hexahedral cells in the near wall,
which were transitioned to tetrahedral cells via a layer of pryamidal cells to form a 3-D grid of 364,380 hexahedral,
14,840 prismatic, 67,519 pyramidal and 647,424 tetrahedral cells for a total of 1,094,163 cells presented in Figs. 25 and
26. The boundary conditions were: 1) reflection of all variables at the min. and max. Y-direction boundary cell faces
(Symmetry Boundaries), 2) specification of all variables on the parabolic shaped surface boundary cell faces (Inflow
Boundary), 3) 1st-order extrapolation of all variables at the max. X-direction boundary cell faces (Outflow Boundary)
and 4) isothermal wall-matching on the wall boundary cell faces (No-slip Isothermal Wall Boundary). The computations
were performed using parallel processing on 24 partitions. A computation was performed using each stencil stencil type
with all other input parameters being unchanged. For each computation, the stencil statistics, convergence behavior,
contour plots of the flow solution and the X distribution of wall heat transfer were extracted and used to compare the
fn2, nn and symF stencils. However,  results were not obtained for the fn1 stencil because it was found to be unstable. 

Table 3 presents the stencil statistics and the relative augmentation cost. This grid, due to its 3-D nature, and
due to it consisting of hexahedral, tetrahedral, pyramidal and tetrahedral cells has statistics such that the min. stencil
size has been determined by the topology of the hexahedral cells and the max. stencil size has been determined by the
connectivity of the tetrahedral cells. The min. stencil size of all 3 stencil types are smaller than expected based on a 3-D
extension of Fig. 3 for a hexahedral cell due the same boundary effect described previously. Again, the key point of
Table 3 is that the  symF stencil is both smaller and varies less over the computational domain than the  fn2 and  nn
stencils by a significant amount, and the relative augmentation cost metric indicates that the symF stencil was 3.5 and
6.3 times less expensive than the fn2 and nn stencils, respectively. 

Table 3 Stencil statistics and relative cost of the fn2, nn and symF stencils for the blunt wedge grid.

Stencil
Augmentation 

Type

Minimum (min.)
Stencil

Size

Mean
Stencil

Size

Maximum (max.)
Stencil

Size

Stencil
Standard 

Deviation (σ)

Relative
Augmentation

Cost 

fn2 13 18.6 32 4.39 1

nn 8 54.5 133 22.2 2.91

symF 5 11.1 24 3.82 0.55

Figures 27 and 28 present contour plots of Mach using the symF stencil and are typical of the results obtained
using all three stencil types. Figure 27 shows that the flow solution can be seen to be nearly oscillation free with the
bow shock being well captured. Figure 28, which presents a close up of the blunt body bow shock on the cutting plane
described in Fig. 25, is carbuncle free and well captured in approximately three cells in the hexahedral cell part of the
grid in the vicinity of the stagnation streamline. Figure 29 presents a comparison of the convergence history of the
reduction of the L2 norm of the residual for computations using the three stencils, showing that once the limiter was
frozen the stencils gave nearly identical convergence behavior. Figure 30 presents a comparison of the normalized wall
heat flux versus normalized X-distance showing that, in this case, all three stencil methods produced results that are
similar in shape. However, the nn stencil results are approximately 12% higher than the fn2 and symF results and the
maximum difference in heat transfer between the fn2 and symF stencil types was approximately 2% near the outflow
boundary. The cause of this disagreement is not known at this time but may be related to the high aspect ratio and high
streamwise curvature nature of the grid and its affect on least square gradients reported in Ref. [10,13,32].
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Fig. 25 3-D computational grid and boundary conditions for hypersonic flow over a 2-D blunt wedge.

Fig. 26 Close up view of the leading edge grid on cutting plane for hypersonic flow over a 2-D blunt wedge.
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Fig. 27 Mach number contours for hypersonic flow over a 2-D blunt wedge step computed using the symF stencil.

Fig. 28 Close up of leading edge Mach number contours for hypersonic flow over a 2-D blunt wedge computed 
using the symF stencil.
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Fig. 29 A comparison of the residual convergence behavior for the computation of hypersonic flow over a 2-D
blunt wedge using the fn2, nn, and symF stencils.

Fig. 30 A comparison of the axial distribution of wall heat transfer for the computation of hypersonic flow over a
2-D blunt wedge using the fn2, nn, and symF stencils.
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V. Summary And Conclusions

The methods used in  the VULCAN-CFD code to  construct  the cell-average  and  cell  face gradients  were
described. Particular attention was paid to the weighted linear least-squares methods for the construction of cell-average
gradients. Multiple least-squares stencil construction methodologies were investigated, compared and evaluated. Three
of the stencil construction methods were based on the current state of the art, the fn1, fn2 and nn methods and a fourth
method,  symF, is based on a modification of a Frobenius-norm minimization-based approach recently introduced by
Nishikawa [9]. In addition, a modified form of the MLP cell-average gradient limiter method of Park and Kim [25] that
can be applied to a general stencil was introduced. The extension of Nishikawa's symF method to 3-D turbulent viscous
flow for  use  in  the  VULCAN-CFD code was  described  in  detail.  The  modifications to  Nishikawa's  symF stencil
construction method were based on 1) the results obtained from a cell-average gradient accuracy verification study
conducted in 2-D using severely distorted grids and 2) inherent implementation constraints currently in the VULCAN-
CFD code.  The  accuracy of  the  fn2,  nn and  modified  symF stencil  construction  methods  were  compared  against
analytical  results for a 2-D canonical  problem using severely distorted quadrilateral  and triangular  cell  grids.  This
verification effort revealed that the symF method produced lower accuracy results on the distorted quadrilateral grids.
This  conclusion,  and  the  aforementioned  implementation  constraints,  led  to  a  modification  of  the  construction
methodology proposed by Nishikawa where the fn1 stencil is used for hexahedral cells and a symF stencil,  obtained  by
augmenting the  fn1 stencil using the set of cells belonging to the  nn stencil using the  symF minimization process, is
used for prismatic, pyramidal and tetrahedral cells. 

The robustness and accuracy of the fn1, fn2,  nn and modified symF stencil construction methods for viscous
flow were then examined by computing three canonical turbulent hypersonic flows with each of the stencils. The stencil
size statistics, convergence behavior and wall heat transfer of the three flows for each of the stencil methods were
examined and compared. The modified symF stencil was found to give stencils having the fewest member cells and to
produce the most uniform stencil distribution on fully 3-D unstructured grids, resulting in the modified  symF stencil
being the least  expensive method by at  least  a  factor  of   3 compared to the  nn stencil  for  the blunt  wedge case.
Moreover, the modified symF stencil was found to give similar convergence behavior for all three flows, and was not
found to exhibit any robustness issues. In agreement with the literature, the fn1 stencil was found to sometimes exhibit
instabilities  in  3-D when using grids  containing tetrahedral  cells.  The  fn1 stencil  was  found  to  be  stable  for  the
backward facing step and flat plate numerical experiments but it was found to be unstable for the blunt wedge numerical
experiment. Moreover, the wall heat transfer comparison for the blunt wedge numerical experiment showed that the nn
stencil produced heat transfer results that were approximately 12% higher than the  fn2 and  symF stencils. The root
cause of this difference is not currently understood but may be due to the high aspect ratio high curvature nature of the
grid around the blunt body portion of the grid and will be the subject of further study. In addition, the robustness and
accuracy of the  fn2,  nn and  symF construction methods will be explored further for fully 3-D flow through typical
scramjet flowpath components.
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